
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University,

Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS 403 PROGRAMMING PARADIGMS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and

Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software

Packages, Web Services, System Tools and Components as per needs and

specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing

environment by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one‘s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

CSE DEPARTMENT, NCERC PAMPADY Page 4

System Software Tools and Efficient Web Design Models with a focus on performance

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

CO1 To acquire the knowledge of Scope and binding of names in different programming

languages. To analyze control flow structures in different programming languages.

CO2 To appraise data types in different programming languages.

CO3 To acquire the knowledge of Subroutines and Co- routines.

CO4 To appraise constructs in functional, logic and scripting languages.

CO5 To analyze object oriented constructs in different programming languages.

CO6 To Learn different concurrency constructs.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

 PO

1

PO

2

PO

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

PO

10

PO

11

PO

12

CO

1

2 2 3 - - - - - - - -

CO

2

3 3 3 - 3 - - - - - - 2

CO

3

3 - 2 - - - - - - - -

CO

4

3 - 3 - 3 - - - - - - 3

CO

5

3 - 2 - - - - - - - -

CO 2 - 3 - 3 - - - - - - 2

CSE DEPARTMENT, NCERC PAMPADY Page 5

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

6

 PSO

1

PSO2 PSO

3

CO1 3 3 -

CO2 3 - -

CO3 3 - -

CO4 3 - -

CO5 3 - -

CO6 3 3 -

CSE DEPARTMENT, NCERC PAMPADY Page 6

SYLLABUS

CSE DEPARTMENT, NCERC PAMPADY Page 7

CSE DEPARTMENT, NCERC PAMPADY Page 8

CSE DEPARTMENT, NCERC PAMPADY Page 9

CSE DEPARTMENT, NCERC PAMPADY Page 10

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

1 What do you mean by Boxing and Unboxing? CO1 K1

2 Explain Lazy evaluation. CO1 K2

3 Explain Iterators. CO1 K4

4 Explain about the foll: storage allocation

mechanisms used

CO1 K5

5 Discuss about Expression evaluation ordering with

examples

CO1 K2

6 Explain tail recursive function CO1 K5

7 How a Case statement is internally implemented?

What are the different search strategies that can be

used?

CO1 K2

MODULE II

1 Distinguish between strict and loose name

equivalence.

CO2 K1

2 Explain bit vector representation of sets CO2 K2

3 Describe iterative deepening with DFS. CO2 K4

4 Explain about Type checking. CO2 K5

5 Differentiate between structural equivalence and

named equivalence with examples

CO2 K2

6 Describe the meaning of Type. Why C is not a

strongly typed language?

CO2 K4

7 Write notes on Records. CO2 K5

8 Describe about Variant Records. CO2 K2

9 Differentiate between enumeration and subrange

data types.

CO2 K2

MODULE III

1 Explain abstraction. CO3 K2

2 Explain the subroutine calling sequence. CO3 K2

CSE DEPARTMENT, NCERC PAMPADY Page 11

3 Describe the various tasks performed by prolog

and epilog.

CO3 K2

4 Differentiate static and dynamic link with suitable

examples.

CO3 K4

5 Describe how to maintain the static chain during a

subroutine call.

CO3 K5

6 Describe the purpose of stack pointer and frame

pointer registers.

CO3 K2

7 Distinguish between formal and actual parameters. CO3 K2

8 Draw and explain the layout of stack frame. CO3 K5

9 Explain the parameter passing mechanisms. CO3 K2

MODULE IV

1 Explain the applications of functional

programming languages.

CO4 K2

2 Describe the features of functional programming

languages.

CO4 K2

3 Explain the concept of functional programming. CO4 K4

4 Write short note on Lambda calculus. CO4 K5

5 Describe the behavior of LISP/Scheme read-eval-

print loop.

CO4 K1

6 Sketch the internal representation of LISP List:

(A B C D)

(A(BC)D(E(FG)))

CO4 K2

MODULE V

1 Explain the distinction between private, public and

protected class members. What are the visibility

rules in C++.

CO5 K2

2 Explain the importance of virtual methods for

object closures (or),What is the use of Vtable?.

CO5 K4

3 Elaborate the characteristics of scripting languages. CO5 K2

4 List the principal ways in which scripting CO5 K5

CSE DEPARTMENT, NCERC PAMPADY Page 12

languages differ from conventional ―systems‖

languages.

5 Compare the approaches to object orientation taken

by

Perl 5,

PHP 5 and Javascript

CO5 K2

6 Write notes on dynamic method binding in object

oriented programming

CO5 K5

7 Explain data types supported by scripting

languages

CO5 K2

8 Explain the features of any one scripting language. CO5 K2

9 Explain how pattern matching is done in scripting

languages..

CO5 K2

10 Compare the numeric types of popular scripting

languages..

CO5 K2

MODULE VI

1 Explain the language support/constructs needed for

thread implementation. Also explain thread

architecture

CO6 K2

2 Explain the methods used for creating a new thread

of control in concurrent programming?

CO6 K2

3 Explain about ‗Late binding of machine code‘? CO6 K5

4 With a state diagram, explain states of a thread CO6 K4

5 Explain about symbolic debugging CO6 K3

6 How do binary and general semaphores differ? CO6 K5

7 Explain about symbolic debugging. CO6 K3

CSE DEPARTMENT, NCERC PAMPADY Page 13

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Python programming paradigms

148

MODULE NOTES

MODULE - 1

Introduction to Programming paradigms:

Programming paradigms are a way to classify programming languages based on their features.

Languages can be classified into multiple paradigms.

Common programming paradigms include:

 Imperative which allows side effects,

 Procedural which groups code into functions(eg: C, FORTRAN, Pascal,

COBOL,BASIC, Ada etc)

 Object-oriented which groups code together with the state the code

modifies.(eg:C++,C#, Java, Simula,Smalltalk)

 Declarative which does not state the order in which operations execute,

 Functional which disallows side effects(eg: Lisp, Scheme, Haskell, Erlang,

ML,APL,Miranda,etc)

 Logic which has a particular style of execution model coupled to a particular style of

syntax and grammar(eg:Prolog)

 Symbolic programming which has a particular style of syntax and grammar

1. Names

 A name is a mnemonic character string used to represent something else. Names in most

languages are identifiers (alphanumeric tokens), though certain other symbols, such as + or

:=, can also be names.

 Names allow us to refer to variables, constants, operations, types, and so on using symbolic

identifiers rather than low-level concepts like addresses.

 Names are also essential in the context of a second meaning of the word abstraction.

CSE DEPARTMENT, NCERC PAMPADY Page 14

 In this second meaning, abstraction is a process by which the programmer associates a name

with a potentially complicated program fragment, which can then be thought of in terms of

its purpose or function, rather than in terms of how that function is achieved.

 By hiding irrelevant details, abstraction reduces conceptual complexity, making it possible

for the programmer to focus on a manageable subset of the program text at any particular

time.

 Names are control abstractions and data abstractions for program

 Subroutines are control abstractions: they allow the programmer to hide arbitrarily

complicated code behind a simple interface.

 Classes are data abstractions: they allow the programmer to hide data representation details

behind a (comparatively) simple set of operations.

2. Scope

 A scope is the context within a computer program in which a variable name or other identifier

is valid and can be used, or within whicha declaration has effect.

 The scope of a binding is also known as the visibility of an entity.

 Static scope: Scoping follows the structure of the program. C is said to be statically scoped.

 Dynamic scope, where scoping follows the execution path.the languages, including APL,

Snobol, and early versions of Lisp, are dynamically scoped: their bindings depend on the

flow of execution at run time.

Example:

int i = 1; //global variable

void printdata()

{

cout << i << endl;

}

int main ()

{

int i = 2;

printdata();

return 0;

}

If static scoping used, the result will be 1

If dynamic scoping used, this would print out 2.

 The lexical scope of a variable's definition is resolved by searching its containing block or

function, then if that fails searching the outer containing block, and so on.

 Whereas with dynamic scope the calling function is searched, then the function which called that

calling functions, and so on, progressing up the call stack. Of course, in both rules, we first look

for a local definition of a variable.

CSE DEPARTMENT, NCERC PAMPADY Page 15

 Most modern languages use lexical scoping for variables and functions, though dynamic scoping

is used in some languages, notably some dialects of Lisp, some "scripting" languages, and

some template languages.Perl 5 offers both lexical and dynamic scoping.

3. Binding Time

 A binding is an association between two things, such as a name and the thing it names.

 Binding time is the time at which a binding is created or, more generally, the time at which any

implementation decision is made to create a name entity binding.

 There are many different times at which decisions may be bound:

 Language design time: the design of specific program constructs (syntax), primitive

types, and meaning (semantics).

 Language implementation time: fixation of implementation constants such as numeric

precision, run-time memory sizes, max identifier name length, number and types of built-

in exceptions, etc.

 Program writing time: Programmers, of course, choose algorithms, data structures,and

names.

 Compile time: Compilers choose the mapping of high-level constructs to machinecode,

including the layout of statically defined data in memory.

 Link time: the time at which multiple object codes (machine code files) and libraries are

combined into one executable

 Load time: when the operating system loads the executable in memory

 Run time: when a program executes

The Effect of Binding Time

 The compiler performs a process called binding when an object is assigned to an object variable.

The early binding (static binding) refers to compile time binding and late binding (dynamic

https://en.wikipedia.org/wiki/Template_language

CSE DEPARTMENT, NCERC PAMPADY Page 16

binding) refers to runtime binding. In general, early binding times are associated with greater

efficiency, while later binding times are associated with greater flexibility.

 Binding lifetime: time between creation and destruction of binding to object.

o Example: A pointer variable is set to the address of an object

o Example: A formal argument is bound to an actual argument

 Object lifetime: time between creation and destruction ofan object.

 Key events in object lifetime

o Object creation

o Creation of bindings

o References to variables, subroutines, types are made using bindings

o Deactivation and reactivation of temporarily unusable bindings

o Destruction of bindings

o Destruction of objects

 Bindings are temporarily invisible when code is executed where thebinding (name object)

is out of scope

 Memory leak: object never destroyed (binding to object may havebeen destroyed, rendering

access impossible)

 Dangling reference: object destroyed before binding is destroyed

 Garbage collection prevents these allocation/deallocation problems

4. Scope Rules

The textual region of the program in which a binding is active is its scope. In most modern

languages, the scope of a binding is determined statically, that is at compile time. A scope is the

body of a module, class, subroutine, or structured control flow statement, sometimes called a

block. In C family languages it would be delimited with {...} braces.

Statically scoped language: the scope of bindings is determined at compile time.

Dynamically scoped language: the scope of bindings is determined at run time.

 Static Scoping

The bindings between names and objects can be determined by examination of the program

text.

Scope rules of a program language define the scope of variables and subroutines, which is the

region of program text in which a name-to-object binding is usable.

- EarlyBasic:

CSE DEPARTMENT, NCERC PAMPADY Page 17

 all variables are global and visible everywhere.

- Fortran77:

 the scope of a local variable is limited to a subroutine;

 the scope of a globalvariable is the whole program text unless it is

hidden by a local variable declaration with thesame variable name.

- Algol60, Pascal, and Ada:

 these languages allow nested subroutines definitions and adopt the

closest nested scope rule with slight variations in implementation.

- C: one declares the variable static; Algol: one declares it own.

 A save-ed (static, own) variable has a lifetime that encompasses the

entire execution of the program. Instead of a logically separate object

for every invocation of the subroutine, the compiler creates a single

object that retains its value from one invocation of the subroutine to

the next.

 Nested Subroutines

 The ability to nest subroutines inside each other, introduced in Algol 60, is a feature of

many modern languages, including Pascal, Ada, ML, Python, Scheme, Common Lisp, and

(to a limited extent) Fortran 90.

 Other languages, including C and its descendants, allow classes or other scopes to nest.

 But C based languages has no nested subroutines

 In Algol-family languages. Algol-style nesting gives rise to the closest nested scope rule for

bindings from names to objects:

 A name that is introduced in a declaration is known in the scope in

which it is declared, and in each internally nested scope, unless it is

hidden by another declaration of the same name in one or more

nested scopes.

 To find the object corresponding to a given use of aname, we look

for a declaration with that name in the current, innermost scope.

 If there is one, it defines the active binding for the name.

 Otherwise, we look for a declaration in the immediately

surrounding scope.

 We continue outward, examining successively surrounding scopes,

until we reach the outer nesting level of the program, where global

objects are declared.

 If no declaration is found at any level, then the program is in error.

 In Pascal, a procedure is defined using the procedure keyword. The general form of a

procedure

In this below example, procedure Nested scopes P2 is called only by P1, and need not be

visible outside. It is therefore declared inside P1, limiting its scope (its region of visibility)

to the portion of the programshown here.

 In a similar fashion, P4 is visible only within P1

 P3 is visible only within P2

 and F1 is visible only within P4.

 Under the standard rules for nested scopes, F1 could call P2 .,

CSE DEPARTMENT, NCERC PAMPADY Page 18

 and P4 could call F1.,

 but P2 could not call F1.

 Though they are hidden from the rest of the program, nested subroutines are able to access

the parameters and local variables (and other local objects) of the surrounding scope(s). In

our example, P3 can name (and modify) A1, X, and A2, in addition to A3.

 Because P1 and F1 both declare local variables named X, the inner declaration hides the

outer one within a portion of its scope.

 Uses of X in F1 refer to the inner X; uses of X in other regions of the code refer to the outer

X.

Static Scope Implementation with static links

- Scope rules are designed so that we can only refer to variables that are alive: the

variable must have been stored in the frame of a subroutine

- If a variable is not in the local scope, we are sure there is a frame for the surrounding

scope somewhere below on the stack:

 The current subroutine can only be called when it was visible

 The current subroutine is visible only when the surrounding scope is

active

- The simplest way in which to find the frames of surrounding scopes is to maintain a

static link in each frame that points to the ―parent frame‖.Each frame on the stack

contains a static link pointing tothe frame of the static parent.

CSE DEPARTMENT, NCERC PAMPADY Page 19

 Example static links.

Static Chains

o How do we access non-local (global) objects?

o The static links form a static chain, which is a linked listof static parent frames

o When a subroutine at nesting level j has a reference to an object declared in a static parent at

the surrounding scope nested at level k, then j-k static links forms a static chain that is

traversed to get to the frame containing theobject.

o The compiler generates code to make these traversals over frames to reach non-local objects

Out of Scope

o Non-local objects can be hidden by local name-to-object bindings and the scope is said to

have a ―hole‖ in which the non-local binding is temporarily inactive but notdestroyed.

o Some languages, notably Ada and C++ use qualifiers or scope resolution operators to access

non-local objectsthat are hidden

o Subroutines C and D are declared nested in B.

o B is static parent of C and D.

o B and E are nested in A.

o A is static parent of B and E.

o The fp(frame pointer) points to the frame at the

top of the stack.

o The static link in the frame points to the frame of

the static parent.

o If a subroutine is declared at the outermost

nesting level of the program, then its frame will

have a null static link at run time. That is, A.

o Subroutine A is at nesting level1 and C at

nesting level 3

o When C accesses an object of A, 2 static

links are traversed to get to A's frame

thatcontains that object

CSE DEPARTMENT, NCERC PAMPADY Page 20

 Dynamic Scoping

o Scope rule: the "current" binding for a given name is the one encountered most recently

during execution.

o Typically adopted in (early) functional languages that are interpreted

o Languages with Dynamic scoping:

 APL, Snobol, TEX, early versions of Lisp, Perl

o Perl v5 allows you to choose scope method for each variableseparately

o With dynamic scope:

 Name-to-object bindings cannot be determined by a compiler in general

 Easy for interpreter to look up name-to-object binding in a stack

ofdeclarations

o Sometimes useful:

 Unix environment variables have dynamic scope

 It makes it very easy for an interpreter to look up the meaning of a name

 All that is required is a stack of declarations.

o Generally considered to be "a bad programming language feature"

 Hard to keep track of active bindings when reading a program text

 Most languages are now compiled, or a compiler/interpreter mix

 Unfortunately, this simple implementation has a very high run-time cost, and

experience indicates that dynamic scoping makes programs harder to

understand.

 The modern consensus seems to be that dynamic scoping is usually a bad idea.

CSE DEPARTMENT, NCERC PAMPADY Page 21

o If static scoping is in effect, the above program Static vs. dynamic scoping

 Prints a 1.

o If dynamic scoping is in effect, the output depends on the value read at line 8 at run time:

 if the input is positive, the program prints a 2;

 if the input is negative or 0.,, the program prints a 1.

o Why the difference? At issue is whether the assignment to the variablen at line 3 refers to the

global variable declared at line 1 or to the local variabledeclared at line 5.

o Static scope rulesrequire that the reference resolve to the closestlexically enclosing

declaration, namely the global n. Procedure first changes n to1, and line 12 prints this value.

o Dynamic scope rules, on the other hand, requirethat we choose the most recent, active

binding for n at run time.

PROBLEMS WITH DYNAMIC SCOPING

o Run-time errors with dynamic scoping:With dynamic scoping, errors associated with the

referencing environment maynot be detected until run time.

o For example, the declaration of local variable max_score in procedure foo accidentally

redefines a global variable used by function scaled_score, which is then called from foo.

Since the global max_score is an integer, while the local max_score is a floating-point

number, dynamic semantic checks in at least some languages will result in a type clash

message at run time.

o If the local max_score had been an integer, no error would have been detected, but the

program would almost certainly have produced incorrect results.

o This sort of error can be very hard to find.

o In this example, function scaled_score probably does not do what the programmer intended:

with dynamic scoping, max_score in scaled_score is bound to foo's local variable max_score

after foo calls scaled_score, which was the most recent bindingduring execution.

CSE DEPARTMENT, NCERC PAMPADY Page 22

 Implementing Scope

o To keep track of the names in a statically scoped program, a compiler relies on a

data abstraction called a symbol table. In essence, the symbol table is a dictionary: it

maps names to the information the compiler knows about them.

o In a language with dynamic scoping, an interpreter (or the output of a compiler)

must perform operations analogous to symbol table insert and lookup at runtime. In

principle, any organization used for a symbol table in a compiler could be used to

track name-to-object bindings in an interpreter, and vice versa. In practice,

implementations of dynamic scoping tend to adopt one of two specific organizations:

an association list or a central reference table.

5. Storage Management

Objects (program data and code) have to be stored in memory during their lifetime. Object

lifetimes generally correspond to one of three principal storage allocation mechanisms, used to

manage the object‘s space. They are static allocation, stack allocation, and heap allocation.

CSE DEPARTMENT, NCERC PAMPADY Page 23

(1) STATIC ALLOCATION

Static Objects have an absolute storage addressthat is retained throughout the execution of the

program. (Absolute addresses are also called real addresses and machine addresses. A

fixed address in memory).They are often allocated in protected, read-only memory. So that any

attempt to write to them will cause a processor interrupt, allowing the operating system to

announce a run-time error.Advantage of statically allocated object is the fast access due to

absolute addressing of the object.

Examples of static objects are:

 Global variables are static objects

 Program code is statically allocated in most implementations of imperative languages.

 Variables that are local to single subroutine, but retain their values from one invocation to

the next; their space is statically allocated.

 Numeric and string valued constants can be allocated statically.

 Run time tables produced by compilers (these tables are used for support of debugging, type

checking, garbage collection, exception handling and other purposes) are statically

allocated.

 static local variables in C

 In earlier versions of FORTRAN, recursion was not supported.As a result, there can never

be more than one invocation of subroutine active. Thus the compiler may choose to use

static allocation for local variables in that language. In languages with recursion, we can‘t

use static allocation of local variables.

CSE DEPARTMENT, NCERC PAMPADY Page 24

(2) STACK ALLOCATION

Static allocation does not work for local variables in potentially recursive subroutines. Every

(recursive) subroutine call must haveseparate instantiations of local variables. So we use stack

allocation.Stack Objectsare allocated in last-in first-out(LIFO) order, usually in conjunction

with subroutine calls and returns.

 Each instance of a subroutine at run time has a frame on the run-time stack (also

called activation record).

 Compiler generates subroutine calling sequence to setup frame, call the routine, and to

destroy the frame afterwards.

 Frame layouts vary between languages and implementations

 A frame pointer (fp) points to the frame of the currently active subroutine at run time

(always topmost frame on stack)

 Subroutine arguments, local variables, and return values are accessed by constant address

offsets from fp

 The stack pointer (sp) points to free space on the stack.

 Even in a language without recursion, it can be advantageous to use a stack for local

variables, rather than allocate them statically.

(3) HEAP ALLOCATION

A heap is a region of storage in which sub-blocks can be allocated and de-allocated at arbitrary times.

Heaps are required for the dynamically allocated pieces of linked data structures, and for objects like

fully general character strings, lists, and sets, whose size may change as a result of an assignment

CSE DEPARTMENT, NCERC PAMPADY Page 25

statement or other update operation.

Strategies to manage space in a heap

o The principal concerns are speed and space, and as usual there are tradeoffs between

them.

o Space concerns can be further subdivided into issues of internal and external

fragmentation

Internal fragmentation:
It occurs when a storage-management algorithm allocates a block that is larger than required to

hold a given object.The extra space is then unused.

External fragmentation:
It occurs when the blocks that have been assigned to active objects are scattered through the heap

in such a way that the remaining, unused space is composed of multiple blocks: there may be

quite a lot of free space, but no one piece of it may be large enough to satisfy some future

request.

Many storage-management algorithms maintain a single linked list—the free list—of heap blocks

not currently in use.

o Initially the list consists of a single block comprising the entire heap.

o At each allocation request the algorithm searches the list for a block of appropriate size.

o With a first fit algorithm we select the first block on the list that is large enough to satisfy

the request.

o With a best fit algorithm we search the entire list to find the smallest block that is large

enough to satisfy the request.

o In either case, if the chosen block is significantly larger than required, then we divide it in

two and return the unneeded portion to the free list as a smaller block. (If the unneeded

portion is below some minimum threshold in size, we may leave it in the allocated block

as internal fragmentation.)

o When a block is de-allocated and returned to the free list, we check to see whether either

or both of the physically adjacent blocks are free; if so, we coalesce them.

o Intuitively, one would expect a best fit algorithm to do a better job of reserving large

CSE DEPARTMENT, NCERC PAMPADY Page 26

blocks for large requests. At the same time, it has higher allocation cost than a first fit

algorithm, because it must always search the entire list, and it tends to result in a larger

number of very small ―left-over‖ blocks.

o Which approach—first fit or best fit—results in lower external fragmentation depends on

the distribution of size requests.

In any algorithm that maintains a single free list, the cost of allocation is linear in the number of free

blocks. To reduce this cost to a constant, some storage management algorithms maintain separate

free lists for blocks of different sizes.

 Each request is rounded up to the next standard size (at the cost of internal fragmentation) and

allocated from the appropriate list.

 In effect, the heap is divided into ―pools,‖ one for each standard size.

 The division may be static or dynamic.

Two common mechanisms for dynamic pool adjustment are known as the buddy system and the

Fibonacci heap.

 In the buddy system, the standard block sizes are powers of two. If a block of size is needed,

but none is available, a block of size is split in two. One of the halves is used to satisfy the

request; the other is placed on the free list. When a block is deallocated, it is coalesced with

its ―buddy‖—the other half of the split that created it—if that buddy is free.

 Fibonacci heaps are similar, but use Fibonacci numbers for the standard sizes, instead of powers

of two. The algorithm is slightly more complex, but leads to slightly lower internal

fragmentation, because the Fibonacci sequence grows more slowly than .

 The problem with external fragmentation is that the ability of the heap to satisfy requests may

degrade over time. To eliminate external fragmentation, we must be prepared to compactthe

heap, by moving already-allocated blocks. This task is complicated by the need to find and

update all outstanding references to a block that is being moved.

What happens when the user no longer needs the heap-allocated space?

 Manual de-allocation: The user issues a command like free or delete to return the space (C,

Pascal). When a block (including any internal wasted space) is returned, it is coalesced, if

possible, with any adjacent free blocks.

 Automatic de-allocation via garbage collection (Java, C#, Scheme, ML, Perl).

 Semi-automatic de-allocation using destructors (C++, Ada). The destructor is called

automatically by the system, but the programmer writes the destructor code.

Poorly done manual de-allocation is a common programming error.

o If an object is de-allocated and subsequently used, we get a dangling reference.

o If an object is never de-allocated, we get a memory leak.

We can run out of heap space for at least three different reasons.

 What if there is not enough free space in total for the new request and all the

currently allocated space is needed?

Solution: Abort.

CSE DEPARTMENT, NCERC PAMPADY Page 27

 What if we have several, non-contiguous free blocks, none of which are big

enough for the new request, but in total they are big enough?

This is called external fragmentation since the wasted space is outside (external

to) all allocated blocks.

Solution: Compactify.

 What if some of the allocated blocks are no longer accessible by the user, but

haven't been returned?

Solution: Garbage Collection

CSE DEPARTMENT, NCERC PAMPADY Page 28

GARBAGE COLLECTION

 A garbage collection algorithm is one that automatically de-allocates heap

storage when it is no longer needed.

 There are two aspects to garbage collection: first, determining automatically

what portions of heap allocated storage will (definitely) not be used in the

future, and second making this unneeded storage available for reuse.

Disadvantages of Garbage Collection:

 Extra burden for the language implementer.

 When the garbage collector is running, machine resources are being consumed.

 For some programs the garbage collection overhead can be a significant portion

of the total execution time.

 The programmer can easily tell when the storage is no longer needed, it is

normally much quicker for the programmer to free it manually than to have a

garbage collector do it.

6. Binding of Referencing Environments

What is Referencing Environment?

o It is the collection of all names that are visible in the statement.

o In a static-scoped language, referencing Environments is the local variables plus all of

the visible variables in all of the enclosing scopes.

o The referencing environment of a statement is needed while that statement is being

compiled, so code and data structures can be created to allow references to non-local

variables in both static and dynamic scoped languages.

o A subprogram is active if its execution has begun but has not yet terminated.

o In a dynamic-scoped language, the referencing environment is the local variables plus

all visible variables in all active subprograms.

CSE DEPARTMENT, NCERC PAMPADY Page 29

CSE DEPARTMENT, NCERC PAMPADY Page 30

Binding of Referencing Environment:

There are mainly two types of binding of referencing environment

 Deep Binding

 Shallow Binding

Deep/shallow binding makes sense only when a procedure can be passed as an argument to a

function.

 Deep binding

o Binds the environment at the time a procedure is passed as an argument.

o In the Example program: f2(f3);

o It is the earlybinding (static or lexical) of the referencing environment of a

subroutine.

o The need for deep binding is sometimes referred to as the funarg problem in Lisp

 Shallow binding

o Binds the environment at the time a procedure is actually called.

o In the Example program:f3 (); function call.

o It is the late binding (dynamic) of referencing environment of a subroutine.

CSE DEPARTMENT, NCERC PAMPADY Page 31

Deep binding

(static)

Example program

Shallow binding

(dynamic)

Point (1)

x of f1()10

Point (2)

x of f2()6

(x of f1()hidden)

Point (3)

x of f1()10

Print x=10

function f1()

{

 var x = 10;

function f2(fx)

 {

 var x;

 x = 6;

 fx();

 };

function f3()

 {

 print x;

 };

 f2(f3);

};

Point (1)

x of f1()10

Point (2)

x of f2()6

(x of f1()hidden)

Point (3)

x of f2()6

(x of f1()hidden)

Print x=6

 In case of deep binding,f3() gets the environment of f1() and prints the value of x as 10 which

is local variable of f1().In case of shallow binding, f3() is called in f2() and hence gets the

environment of f2()and prints the value of x as 6 which is local to f2().

 These Binding rules are irrelevant in languages like C (which has no nested subroutines),

Modula-2 (which allow only outermost subroutines to be passed as parameters), PL/I and Ada

(which do not permit subroutines to be passed as parameters at all.

7. Expression Evaluation

An expression consists of

 A simple object, e.g. number or variable

 An operator (eg:+)applied to a collection of operands(a,b,..) which is

expression.

a + b an expression

 Or function(eg:addition()) applied to a collection of arguments(a,b) is an

expression.

addition(a,b)an expression.

Common syntactic forms for operators:

 Function call notation, e.g. addnum(A, B, C), where A, B, and C are

expressions

 Infix notation[a op b] for binary operators, e.g. A + B

 Prefix notation[op a] for unary operators, e.g. –A

CSE DEPARTMENT, NCERC PAMPADY Page 32

 Postfix notation [a op] for unary operators, e.g. i++

 CambridgePolish(prefix)notation, (op a b).,

e.g. (* (+ 1 3) 2) in Lisp, meaning is =(1+3)*2=8.

It places the function name inside the parentheses.

 Mixfix notation(multiword infix notation) in smalltalk

In Smalltalk to send a message to myBox graphical object:

myBox displayOn: myScreen at: 100@50 ,

where displayOn: and at:are written infix with arguments mybox, myScreen,

and 100@50(a pixel location)

 Conditional expressions: In Algol

 a:= if b <> 0 then a/b else 0;

In algol (if…..then….else) is a three operand infix operator.

The equivalent operator in C is :

 a=b != 0 ? a/b : 0;

Most imperative languages (procedural,object oriented) use infix notation for binary operators and

prefix notation for unary operators. Lisp(functional) uses prefix notation for all functions. Smalltalk

use infix notation for all functions.

Expression Evaluation Ordering: Precedence and Associativity

 The use of infix, prefix, and postfix notation leads to ambiguity as to what is an

operand of what, e.g. a+b*c**d**e/f in Fortran, should this grouped as

 ((((a + b) * c)**d)**e) / f or

 a + (((b * c)**d)**(e/f)) or

 a + ((b *(c**(d**e)))/f) or some other option?

 In Fortran, the answer is the last of the options shown.

 The choice among alternative evaluation orders dependsonprecedence and

associativity of operators.

 Operator precedence: higher operator precedence means that a

collection of) operator(s) group more tightly in an expression than

operators of lower precedence.

 Operator associativity: determines evaluation order of operators of the

same precedence

 left associative: operators are evaluated left-to-right (common)

 right associative: operators are evaluated right-to-left

(Fortran power operator **, C assignment operator = and unary

minus)

 non-associative: requires parenthesis when composed

(Ada power operator **)

 Pascal's flat precedence levels is a design mistake

 if A<B and C<D then is read as if A<(B and C)<D then results in static

CSE DEPARTMENT, NCERC PAMPADY Page 33

semantic error. Most languages avoid this problem by giving arithmetic

operators higher precedence than relational (comparison) operators,

which in turn have

higherprecedencethanthelogicaloperators.NotableexceptionsincludeAPL

and Smalltalk, in which all operators are of equal precedence;

parentheses must be used to specify grouping. Below table show

precedence and associativity of operators in C

Assignments

o Fundamental difference between imperative and functional languages

 Imperative Languages: "computing by means of side effects" i.e. computation

is an ordered series of changes to values of variables in memory and statement

ordering is influenced by run-time testing values of variables

 Expressions in functional language are referentially transparent:All values used

and produced depend on the referencing environment of the expression

and not on the evaluation time of the expression

 A function is idempotent in a functional language:Always returns the same

value given the same arguments because of the absence of side-effects

o Assignment a:=b

 Left-hand side ‗a‘ of the assignment is a location, called l-value which is an

expression that should denote a location.Right-hand side ‗b‘ of the assignment

is a value, called r-value which is an expression

 Languages that adopt value model of variables copy values: Ada, Pascal, C,

C++ copy the value of 'b‘ into the location of ‗a‘

CSE DEPARTMENT, NCERC PAMPADY Page 34

 Languages that adopt reference model of variables copy references: Algol

68,Clu,Lisp/Scheme,ML,Haskell, and smalltalk.Clu copies the reference

of b into a and both aand b refer to the same object. Here variable is not a

named container for a value; rather it is named reference to a value.

 Java uses value model for built-in types and reference model for classes

o Variable initialization

 Implicit: e.g. 0 or NaN (not a number) is assigned by default

 Explicit: by programmer (more efficient than using an explicit assignment,

e.g. int i=1; declares i and initializes it to 1 in C)

o Multiway assignments in Clu, ML, and Perl

 a,b := c,d assigns c to a and d to b simultaneously,

e.g.a,b := b,a swaps a with b

 a,b := 1 assigns 1 to both a and b

Evaluation Ordering within Expressions

o Precedence and associativity define rules for structuring expressions

o But do not define operand evaluation order.

Example:

 Expression a-f(b)-c*d is structured as (a-f(b))-(c*d) by compiler,

 but either (a-f(b)) or (c*d) can be evaluated first at run-time

 What is the evaluation order of arguments in subroutine calls with multiple

arguments?

o Two main reasons why the order can be important:

 Side effects: e.g. if f(b) above modifies d (i.e. f(b) has a side effect) the

expression value will depend on the operand evaluation order

 Code improvement: compilers rearrange expressions to maximize efficiency

 Improve memory loads:

CSE DEPARTMENT, NCERC PAMPADY Page 35

a:=B[i]; load a from memory

c:=2*a+3*d; compute 3*d first, because loads are slow.

because waiting for a to arrive in processor

 Common sub-expression elimination:

a:=b+c;

d:=c+e+b; rearranged as d:=b+c+e, it can be rewritten into d:=a+e

 Register allocation: rearranging operand evaluation can decrease the

number of processor registers used for temporary values

Expression Reordering Problems

o Rearranging expressions may lead to arithmetic overflow or different floating point

results

 Assume b, d, and c are very large positive integers, then if b-c+d is rearranged

into (b+d)-c arithmetic overflow occurs

 Floating point value of b-c+d may differ from b+d-c

 Most programming languages will not rearrange expressions when parenthesis

are used, e.g. write (b-c)+d to avoid problems

o Java: expressions evaluation is always left to right and overflow is always detected

o Pascal: expression evaluation is unspecified and overflows are always detected

o C anc C++: expression evaluation is unspecified and overflow detection is

implementation dependent.

Short-Circuit Evaluation

o Boolean expressions provide a special and important opportunity for code

improvement and increased readability.

o Short-circuit evaluation of Boolean expressions means that computations are skipped

when logical result of a Boolean operator can be determined from the evaluation of

one operand.

o Example :

 Consider the expression (a<b) and (b<c);If a > b, there is really no point

in checking to see whether b < c. we know that the overall expression

must be false.

 In the expression (a>b) or (b>c); If a > b, there is no point in checking

to see whether b >c. we know that the overall expression must be true.

o C, C++, and Java use conditional and/or operators: && and ||

o If a in a&&b evaluates to false, b is not evaluated

o If a in a||b evaluates to true, b is not evaluated

o Useful to increase program efficiency(save time),

e.g.if (unlikely_condition&& expensive_condition()) ...

o Pascal does not use short-circuit evaluation.

o In Ada,―and/or‖ uses ―then‖ keyword,

e.g.: (a<b) and then (b<c);

 (a>b) or else (b>c);

o Ada, C, and C++ also have regular Boolean operators

CSE DEPARTMENT, NCERC PAMPADY Page 36

o Short circuiting is not necessarily as attractive for situations in which a Boolean sub

expression can cause a side effect.

o Delayed or Lazy Evaluation:Short circuiting can be considered as a delayed or lazy

evaluation because the operands are passed unevaluated. Internally, the operator

evaluates the first operand in any case, the second only when needed.

8. Structured and Unstructured Flow

 Unstructured flow: the use of goto statements and statement labels to obtain control

flow

 Merit or evil? Generally considered bad, but sometimes useful for jumping

out of nested loops and for programming errors and exceptions

 Java has no goto statement

 Example:In early FORTRAN,

 if(A.lt.B) goto

 ……

10 …….

 Structured flow:

 Sequencing: the subsequent execution of a list of statements in that order

 Selection: if-then-else statements and switch or case-statements

 Iteration: for and while loop statements

 Subroutine calls and recursion

All of which promotes structured programming

9. Sequencing

 A list of statements in a program text is executed in top-down order

 A compound statement is a delimited list of statements

 A compound statement is a block when it includes variable declarations

 C, C++, and Java use { and } to delimit a block

 Pascal and Modula use begin ... end

 Ada uses declare ... begin ... end

 C, C++, and Java: expressions can be used where statements can appear

 In pure functional languages, sequencing is impossible (and not desired!)

10. Selection

 Forms of if-then-else selection statements:

 C and C++ EBNF syntax:

if (<expr>) <stmt> [else <stmt>]

Condition is integer-valued expression. When it evaluates to 0, the else-

clause statement is executed otherwise the then-clause statement is executed. If

more than one statement is used in a clause, grouping with { and } is required

 Java syntax is like C/C++, but condition is Boolean type

 Ada syntax allows use of multiple elsif's to define nested conditions:

if <cond> then

 <statements>

CSE DEPARTMENT, NCERC PAMPADY Page 37

elsif <cond> then

 <statements>

elsif <cond> then

 <statements>

...

else

 <statements>

end if
 In Modula-2,

IF a=b THEN….

ELSIF a=c THEN….

ELSIF a=d THEN….

ELSE….

END

 In Lisp,(equivalent to Modula-2)

(cond

 ((= a b)

 ())

 ((= a c)

 ())

 ((= a d)

 ())

 (T

 (…)))

 In algol 60,

if condition then statements

elseif condition then statements

elseif condition then statements

………………………………….

else statements

 Case/switch statements are different from if-then-else statements in that an expression

can be tested against multiple constants to select statement(s) in one of the arms of

the case statement:

 C, C++, and Java syntax:

switch (<expr>)

{

case <const>: <statements> break;

 case <const>: <statements> break;

 ...

 default: <statements>

}

break is necessary to transfer control at the end of an arm to the end of

the switch statement

 In modula-2,

CSE DEPARTMENT, NCERC PAMPADY Page 38

CASE expr OF

1: clause_A

2,7:clause_B

3..5:clause_C

10:clause_D

ELSE clause_E

END

 The use of a switch statement is much more efficient compared to nested if-then-

else statements

11. Iteration

 Enumeration-controlledloops repeat a collection of statements a number of times,

where in each iteration a loop index variable takes the next value of a set of values

specified at the beginning of the loop

 Logically-controlledloops repeat a collection of statements until some Boolean

condition changes value in the loop

i. Pre-test loops test condition at the begin of each iteration

ii. Post-test loops test condition at the end of each iteration

iii. Mid-test loops allow structured exits from within loop with exit conditions

Enumeration-Controlled Loops

 Enumeration controlled iteration originated with the do loop of FORTRAN I.

 Similar mechanisms have been adopted in some form by almost every subsequent

language, but syntax and semantics vary widely.

Fortran-90:

 do i=1,10,2

 …….

 enddo

 Variable i is called index of the loop.

 The expression that follow the equals sign are i’s initial value, its bound, and

the step size.

 The body of the loop executes 5 times,with I set to 1,3,5,7,9 in successive

iterations.

Algol-60 combines logical conditions:

 Difficult to understand and too many forms that behave the same:

for i := 1, 3, 5, 7, 9 do ...

for i := 1 step 2 until 10 do ...

for i := 1, i+2 while i < 10 do ...

Pascal has simple design:

 for <id> := <expr> to <expr> do <stmt>

for <id> := <expr> downto <expr> do <stmt>

Arms of the case statement
Labels

CSE DEPARTMENT, NCERC PAMPADY Page 39

 Can iterate over any discrete type, e.g. integers, chars, elements of a set

 Index variable cannot be assigned and its terminal value is undefined

Ada for loop is much like Pascal's:

 for <id> in <expr>..<expr> loop

 <statements>

end loop

for <id> in reverse <expr>..<expr> loop

 <statements>

end loop

 Index variable has a local scope in loop body, cannot be assigned, and is not accessible

outside of the loop

C, C++, and Java:

 do not have enumeration-controlled loops although the logically-

controlled for statement can be used to create an enumeration-controlled loop:

 for (i = 1; i <= n; i++)

{

...

...}

Iterates i from 1 to n by testing i <= n before each iteration and updating i by 1 after

each iteration

 Programmer's responsibility to modify, or not to modify, i and n in loop body

 C++ and Java also allow local scope for index variable, for example

for (int i = 1; i <= n; i++)

{

...

...}

Problems With Enumeration-Controlled Loops

C/C++:

 This C program never terminates:

#include <limits.h>

main()

{ int i;

 for (i = 0; i <= INT_MAX; i++)

 ...

}

because the value of i overflows (INT_MAX is the maximum positive value int can

hold) after the iteration with i==INT_MAX and i becomes a large negative integer

 In C/C++ it is easy to make a mistake by placing a ; at the end of

a while or for statement, e.g. the following loop never terminates:

i = 0;

while (i < 10);

CSE DEPARTMENT, NCERC PAMPADY Page 40

{

i++;

}

The C/C++ overflow problem is avoided by calculating the number of iterations in

advance

 However, for REAL typed index variables an exception is raised when overflow

occurs

Pascal and Ada:

 Can only specify step size 1 and -1

 Pascal and Ada can avoid overflow problem

Logically-Controlled Pretest Loops

 Logically-controlled pretest loops test an exit condition before each loop iteration

 Not available Fortran-77 (!)

 Pascal:

while <cond>

do <stmt>

where the condition is a Boolean expression and the loop will terminate when

the condition is false. Multiple statements need to be enclosed in begin and end

 C, C++:

while (<expr>)

<stmt>

where the loop will terminate when expression evaluates to 0 and multiple

statements need to be enclosed in { and }

 Java is like C++, but condition is Boolean expression

Logically-Controlled Posttest Loops

 Logically-controlled posttest loops test an exit condition after each loop iteration

 Not available in Fortran-77 (!)

 Pascal:

repeat <stmt> [; <stmt>]* until <cond>

where the condition is a Boolean expression and the loop will terminate when

the condition is true

 C, C++:

do <stmt> while (<expr>)

where the loop will terminate when the expression evaluates to 0 and multiple

statements need to be enclosed in {and }

 Java is like C++, but condition is a Boolean expression

Logically-Controlled Midtest Loops

CSE DEPARTMENT, NCERC PAMPADY Page 41

 Logically-controlled midtest loops test exit conditions within the loop

 Ada:

 loop

 <statements>

exit when <cond>;

 <statements>

exit when <cond>;

 <statements>

...

end loop

 Also allows exit of outer loops using labels:

outer: loop

 ...

 for i in 1..n loop

 ...

 exit outer when cond;

 ...

 end loop;

end outer loop;

 C, C++:

 Use break statement to exit loops

 Use continue to jump to beginning of loop to start next iteration

 Java is like C++, but combines Ada's loop label idea to allow jumps to outer loops

12. Recursion

 Iteration and recursion are equally powerful: iteration can be expressed by recursion

and vice versa

 Recursion can be less efficient, but most compilers for functional languages will

optimize recursion and are often able to replace it with iterations

 Recursion can be more elegant to use to solve a problem that is recursively defined

 The GCD function is mathematically defined by

gcd(a,b) =

a

if a = b

if a > b

if b > a

int gcd(int a, int b)

{

if (a==b) return a;

 else if (a>b) return gcd(a-b, b);

 else return gcd(a, b-a);

CSE DEPARTMENT, NCERC PAMPADY Page 42

}

Tail Recursive Functions

 Tail recursive functions are functions in which no computations follow a recursive call

in the function

 gcd example recursively calls gcd without any additional computations after the calls

 A recursive call could in principle reuse the subroutine's frame on the run-time stack

and avoid deallocation of old frame and allocation of new frame

 This observation is the key idea to tail-recursion optimization in which a compiler

replaces recursive calls by jumps to the beginning of the function

 For the gcd example, a good compiler will optimize the function into:

int gcd(int a, int b)

{ start:

 if (a==b) return a;

 else if (a>b) { a = a-b; goto start; }

 else { b = b-a; goto start; }

}

which is just as efficient as the iterative implementation of gcd:

int gcd(int a, int b)

{ while (a!=b)

 if (a>b) a = a-b;

 else b = b-a;

 return a;

}

Continuation-Passing-Style:Even functions that are not tail-recursive can be

optimized by compilers for functional languages by using continuation-passing

style:With each recursive call an argument is included in the call that is a reference

(continuation function) to the remaining work.The remaining work will be done by the

recursively called function, not after the call, so the function appears to be tail-

recursive

13. Non-determinacy

 Our final category of control flow is non-determinacy.

 A nondeterministic constructison is in which the choice between alternatives

(i.e.,between control paths) is deliberately unspecified.

 We have already seen examples of non-determinacy in the evaluation of expressions in

most languages, operator or subroutine arguments may be evaluated in any order.

 Some languages, notably Algol68 and various concurrent languages,provide more

extensive non-deterministic mechanisms,which cover statements as well.

CSE DEPARTMENT, NCERC PAMPADY Page 43

MODULE – 2

.

Data Types

Most programming languages include a notion of type for expressionsand/or objects.

Two principal purposes of types.

1.Operations that leveragetype information- Types provide implicit context for many operations,

so that the programmerdoes not have to specify that context explicitly.

In C, for instance, the expression a + b will use integer addition if a andb are of integer type; it

will usefloating-point addition if a and b are of double (floating-point) type.

2. Errors captured by typeinformation - Types limit the set of operations that may be performed

in a semanticallyvalid program.

They prevent the programmer from adding a character and arecord, for example, or from taking

the arctangent of a set, or passing a fileas a parameter to a subroutine that expects an integer.

2.1 TYPE SYSTEMS

Computer hardware can interpret bits in memory in several different ways: asinstructions,

addresses, characters, and integer and floating-point numbers ofvarious lengths.

1. Assemblylanguages reflect this lack of typing.

2. High-level languages, on the other hand, almostalways associate types with values, to provide

the contextual information anderror checking.

A type system consists of

(1) a mechanism to define types andassociate them with certain language constructs,and

(2) a set of rules for typeequivalence, type compatibility, and type inference.

i. The constructs that must havetypes are precisely those that have values, or that can refer to

objects that have

values. These constructs include:

 a)named constants,literal constants

 b) variables,

 c) record fields,

 d) parameters,and

 e) subroutines.

ii. Type equivalence rules determinewhen the types of two values are the same.

iii. Type compatibility rules determinewhen a value of a given type can be used in a given

context.

CSE DEPARTMENT, NCERC PAMPADY Page 44

iv. Type inference rulesdefine the type of an expression based on the types of its constituent parts

or

(sometimes) the surrounding context.

2.1.1 Type Checking

Type checking is the process of ensuring that a program obeys the language‘s typecompatibility

rules.

1. A violation of the rules is known as a type clash.

2. A language issaid to be strongly typed if it prohibits, in a way that the language

implementation

can enforce, the application of any operation to any object that is not intendedto support

thatoperation.

3. A language is said to be statically typed if it is stronglytyped and type checking can be

performed at compile time.

Examples:

1. Ada is strongly typed, and for the most part statically typed(certain type constraints must be

checked at run time).

2. A Pascal implementationcan also do most of its type checking at compile time, though the

language is not

quite strongly typed: untagged variant records are its only loophole.

3. C89 is significantly more strongly typed than its predecessordialects, but still significantly less

strongly typed than Pascal.

4. Implementations of Crarely check anything at run time.

5. Dynamic (run-time) type checking is a form of late binding, and tends to befound in languages

that delay other issues until run time as well. Lisp and Smalltalkare dynamically (though

strongly) typed. Most scripting languages are alsodynamically typed; some (e.g., Python and

Ruby) are strongly typed. Languageswith dynamic scoping are generally dynamically typed (or

not typed at all): if thecompiler can‘t identify the object to which a name refers, it usually can‘t

determinethe type of the object either.

2.1.2 Polymorphism

Polymorphism allows a single body of code to work with objects ofmultiple types.

1. It may or may not imply the need for run-time type checking.

2. Only at run time does the language implementation check to see that the objectsactually

implement the requested operations.

3. Types of objects can bethought of as implied (unspecified) parameters, dynamic typing is said

to support

implicit parametric polymorphism.

4. type inference-forevery object and expression a (possibly unique) type that captures precisely

those

CSE DEPARTMENT, NCERC PAMPADY Page 45

properties that the object or expression must have to be used in the context(s) inwhich it appears.

5. unification: With rare exceptions, the programmer need not specify the typesof objects

explicitly. The task of the compiler is to determine whether there existsa consistent assignment

of types to expressions that guarantees, statically, that nooperation will ever be applied to a value

of an inappropriate type at run time.

This job can be formalized as the problem of unification.

6. subtype polymorphism- In object-oriented languages, subtype polymorphism allows a variable

X of

typeT to refer to an object of any type derived from T. Since derived typesare required to support

all of the operations of the base type, the compiler canbe sure that any operation acceptable for

an object of type T will be acceptablefor any object referred to by X.

7. explicit parametric polymorphism (generics)- allow the programmer to define classes with

type parameters. Genericsare particularly useful for container (collection) classes: ―list of T‖

(List<T>),―stack of T‖ (Stack<T>), and so on, where T is left unspecified. Like

subtypepolymorphism, generics can usually be type checked at compile time, thoughJava

sometimes performs redundant checks at run time for the sake of interoperabilitywith preexisting

nongeneric code. Smalltalk,Objective-C, Python, and Ruby

use a single mechanism for both parametric and subtype polymorphism, withchecking delayed

until run time.

2.1.4 CLASSIFICATION OF TYPES

Most languages providebuilt-in types similar to those supported in hardware by most processors:

integers,

characters, Booleans, and real (floating-point) numbers.

1. NumericTypes

2. EnumerationTypes

3. SubrangeTypes

4. CompositeTypes

1. NumericTypes

a) A few languages (e.g., C and Fortran) distinguish between different lengths ofintegers and real

numbers; most do not, and leave the choice of precision to theimplementation.

b) A few languages, including C, C++, C# andModula-2, provide both signed andunsigned

integers (Modula-2 calls unsigned integers cardinals).

c) Fortran, C99, Common Lisp, and Schemeprovide a built-in complex type,usually implemented

as a pair of floating-point numbers that represent the realand imaginary Cartesian coordinates;

other languages support these as a standardlibrary class.

CSE DEPARTMENT, NCERC PAMPADY Page 46

d) Scheme and Common Lisp-provide a built-inrational type, usually implemented as a pair of

integers that represent the numeratorand denominator.

e) Ada supports fixed-point types, which are represented internally by integers,but have an

implied decimal point at a programmer-specified position amongthe digits.

f) Integers, Booleans, and characters are all examples of discrete types (also calledordinal types):

the domains to which they correspond are countable (they havea one-to-one correspondence with

some subset of the integers), and have a welldefinednotion of predecessor and successor for each

element other than the first

and the last.

3. Subrange Types

1. A subrange is a type whose values compose a contiguoussubset of the values of some discrete

base type (also called the parenttype)

2. Subranges were first introduced in Pascal.

3. Subranges in Pascal- In Pascal, subrangeslook like this:

typetest_score = 0..100;

workday = mon..fri;

4. Subranges in Ada-In Ada one would write

typetest_score is new integer range 0..100;

subtype workday is weekday range mon..fri;

5. The range... portion of the definition in Ada is called a type constraint. In thisexample

test_score is a derived type, incompatible with integers. The workdaytype, on the other hand, is a

constrained subtype; workdays and weekdays can bemore or less freely intermixed. The

distinction between derived types and subtypes

is a valuable feature of Ada.

4. Composite Types

Nonscalar types are usually called composite, or constructed types.

1. They are generallycreated by applying a type constructor to one or more simpler types.

2. Commoncomposite types include records (structures), variant records (unions), arrays, sets,

pointers, lists, and files.

i. Records (structures) were introduced by Cobol, and have been supported by mostlanguages

since the 1960s.

 A record consists of collection of fields, each ofwhich belongs to a (potentially different)

simpler type.

 A record type corresponds to the Cartesian product ofthe types of the fields

ii. Variant records (unions)only one of a variantrecord‘s fields (or collections of fields) is valid

at any given time.

iii. ArraysAn array can be thought ofas a function that maps members of an index type to

members of a componenttype. Arrays of characters are often referred to as strings, and are

oftensupported by special-purpose operations not available for other arrays.

CSE DEPARTMENT, NCERC PAMPADY Page 47

iv. SetsA set type isthe mathematical powerset of its base type, which must often be discrete.A

variable of a set type contains a collection of distinct elements of the basetype.

v. Pointersare l-values. A pointer value is a reference to an object of the pointer‘sbase type.

Pointers are often but not always implemented as addresses. Theyare most often used to

implement recursive data types. A type T is recursiveif an object of type T may contain one or

more references to other objects oftype T.

vi. Lists- A list is defined recursively as either an empty list or apair consisting of a head element

and a reference to a sublist. Lists are always of variable length.To find a given element of alist, a

program must examine all previous elements, recursively or iteratively,starting at the head.

Because of their recursive definition, lists are fundamentalto programming in most functional

languages.

vii. Files are intended to represent data on mass-storage devices, outside the memoryin which

other program objects reside.Files usually havea notion of current position, which allows the

index to be implied implicitly

in consecutive operations.

2.2 TYPE CHECKING

Type Checking can be done by using

1. type equivalence,

2. type compatibility,

3. type inference.

2.2.1 Type Equivalence

In a language in which the user can define new types, there are two principal waysof defining

type equivalence.

a) Structural equivalenceis based on the content of type definitions, two types are the same if

they consist of the samecomponents. Used in Algol-68, Modula-3, and C and ML.

type R2 = record

a, b : integer

end;

should probably be considered the same as

type R3 = record

a : integer;

b : integer

end;

But what about

type R4 = record

b : integer;

a : integer

end;

CSE DEPARTMENT, NCERC PAMPADY Page 48

Should the reversal of the order of the fields change the type? ML says no; most

languages say yes.

b) Name equivalenceis based on the lexicaloccurrence of type definitions, each definition

introduces a new

type. Used in Java, C#, standard Pascal, and most Pascal descendants,including Ada.

Name equivalence is based on the assumption that if the programmer goesto the effort of writing

two type definitions, then those definitions are probablymeant to represent different types.

Variants of Name Equivalence

One subtlety in the use of name equivalence arises in the simplest of type declarations:

Alias types

TYPE new_type = old_type; (* Modula-2 *)

Here new_type is said to be an alias for old_type. Should we treat them as twonames for the

same type, or as names for two different types that happen to havethe same internal structure?

The ―right‖ approach may vary from one program toanother.

1. strictname equivalence- A language in which aliased types are considered distinct is said to

have strict

name equivalence.

Most Pascal-family languages (includingModula-2) use loose name equivalence.

2. loose name equivalence - A language in which aliased types are considered equivalentis said

to have loose name equivalence.

Derived types andsubtypes in Ada- Ada achieves the best of both worlds byallowing the

programmer to indicate whether an alias represents a derived typeor a subtype.

One way to think about the difference between strict and loose name equivalenceis to remember

the distinction between declarations and definitions. Under strict name equivalence, a

declaration type A = B is considered

a definition. Under loose name equivalence it is merely a declaration; Ashares the definition of

B.

Type Conversion and Casts

Dependingon the types involved, the conversion may or may not require code to be executedat

run time. There are three principal cases:

1. The types would be considered structurally equivalent, but the language usesname

equivalence. In this case the types employ the same low-level representation,and have the same

set of values. The conversion is therefore a purelyconceptual operation; no code will need to be

executed at run time.

2. The types have different sets of values, but the intersecting values are representedin the same

way. One type may be a subrange of the other, for example,or one may consist of two‘s

complement signed integers, while the other isunsigned.

CSE DEPARTMENT, NCERC PAMPADY Page 49

3. The types have different low-level representations, but we can nonethelessdefine some sort of

correspondence among their values. A 32-bit integer, forexample, can be converted to a double-

precision IEEE floating-point numberwith no loss of precision. Most processors provide a

machine instruction toeffect this conversion.

NonconvertingType Casts

Occasionally, particularly in systems programs, oneneeds to change the type of a value without

changing the underlying implementation;in other words, to interpret the bits of a value of one

type as if they wereanother type.

A change of type that does not alter the underlying bits is called a nonconvertingtype cast, or

sometimes a type pun. It should not be confused with use of the termcast for conversions in

languages like C.

1. Conversions andnonconverting casts inC++

C++ inherits the casting mechanism of C, but also provides a family of semantically cleaner

alternatives.

2. Specifically, static_cast performs a type conversion,reinterpret_cast performs a nonconverting

type cast, and dynamic_cast allows programs that manipulate pointers of polymorphic types to

performassignments whose validity cannot be guaranteed statically, but can be checked atrun

time.

3. There is also a const_cast that can be used to remove read-only qualification.C-style type casts

in C++ are defined in terms of const_cast, static_cast,and reinterpret_cast; the precise behavior

depends on the source and targettypes.

2.2.2Type Compatibility

Most languages do not require equivalence of types in every context. A value‘s type must be

compatible with that of the contextin which it appears.

1. In an assignment statement, the type of the right-hand sidemust be compatible with that of the

left-hand side.

2. The types of the operandsof + must both be compatible with some common type that supports

addition

(integers, real numbers, or perhaps strings or sets).

3. In a subroutine call, the typesof any arguments passed into the subroutine must be compatible

with the types

of the corresponding formal parameters, and the types of any formal parameterspassed back to

the caller must be compatible with the types of the correspondingarguments.

Coercion

Whenever a language allows a value of one type to be used in a context that expectsanother, the

language implementation must perform an automatic, implicit conversionto the expected type.

This conversion is called a type coercion.

CSE DEPARTMENT, NCERC PAMPADY Page 50

1. A coercion may require run-time code toperform a dynamic semantic check, or to convert

between low-level representations.

Coercion in Ada

Ada coercions sometimes need the former, though never the latter.

d : weekday; -- as in

k : workday; -- as in

typecalendar_column is new weekday;

c :calendar_column;

...

k := d; -- run-time check required

d := k; -- no check required; every workday is a weekday

c := d; -- static semantic error;

-- weekdays and calendar_columns are not compatible

To perform this third assignment in Ada we would have to use an explicit conversion:

c := calendar_column(d);

Coercion in C

1. Coercions are a controversial subject in languagedesign. Because they allow types to be mixed

without an explicit indication ofintent on the part of the programmer, they represent a significant

weakeningof type security.

2. C, which has a relatively weak type system, performs quite a bit ofCoercion in C coercion. It

allows values of most numeric types to be intermixed in expressions,and will coerce types back

and forth ―as necessary.‖

shortint s;

unsigned long int l;

char c; /* may be signed or unsigned -- implementation-dependent */

float f; /* usually IEEE single-precision */

double d; /* usually IEEE double-precision */

...

s = l; /* l‘s low-order bits are interpreted as a signed number. */

l = s; /* s is sign-extended to the longer length, then

its bits are interpreted as an unsigned number. */

s = c; /* c is either sign-extended or zero-extended to s‘s length;

the result is then interpreted as a signed number. */

f = l; /* l is converted to floating-point. Since f has fewer

significant bits, some precision may be lost. */

d = f; /* f is converted to the longer format; no precision lost. */

f = d; /* d is converted to the shorter format; precision may be lost.

If d‘s value cannot be represented in single-precision, the

CSE DEPARTMENT, NCERC PAMPADY Page 51

result is undefined, but NOT a dynamic semantic error. */

3. Fortran 90 allows arrays and records to be intermixed if their types have thesame shape.

a) Two arrays have the same shape if they have the same number ofdimensions, each dimension

has the same size (i.e., the same number of elements),and the individual elements have the same

shape. (In some other languages, theactual bounds of each dimensionmust be the same for the

shapes to be consideredthe same.)

b) Two records have the same shape if they have the same number of fields,and corresponding

fields, in order, have the same shape.

4. Ada‘s compatibility rules for arrays are roughly equivalent to those of Fortran90.

5. C provides no operations that take an entire array as an operand. C does,however, allow arrays

and pointers to be intermixed in many cases.

6. Neither Adanor C allows records (structures) to be intermixed unless their types are

nameequivalent.

Overloading and Coercion

1. An overloaded name can refer to morethan one object; the ambiguitymust be resolved by

context.

a) In the expression a + b, + may refer to either the integeror the floating-point addition

operation.

b) In a language without coercion, a and bmust either both be integer or both be real; the

compiler chooses the appropriateinterpretation of + depending on their type.

c) In a language with coercion, + refersto the floating-point addition operation if either a or b is

real; otherwise it refers tothe integer addition operation.

Universal ReferenceTypes

i. For systems programming,or to facilitate thewriting of general-purpose container(collection)

objects (lists, stacks, queues, sets, etc.) that hold references to otherobjects, several languages

provide a universal reference type.

1. In C and C++, thistype is called void *.

2. In Clu it is called any;

3. InModula-2, address;

4. InModula-3,refany;

5. InJava, Object;

6. In C#, object.

ii. Arbitrary l-values can be assigned into anobject of universal reference type, with no concern

about type safety: because thetype of the object referred to by a universal reference is unknown,

the compilerwill

not allow any operations to be performed on that object.

iii. In Java and C#, a universal to specificassignment requires a type cast, and will generate an

exception if the universalreference does not refer to an object of the casted type.

CSE DEPARTMENT, NCERC PAMPADY Page 52

iv. in C++ it uses adynamic_cast operation.

2.2.3 Type Inference

1. Theresult of an arithmetic operator usually has the same type as the operands.

2. Theresult of a comparison is usually Boolean.

3. The result of a function call has the typedeclared in the function‘s header.

4. The result of an assignment (in languages inwhich assignments are expressions) has the same

type as the left-hand side.

Subranges

Inference of subrange types

typeAtype = 0..20;

Btype = 10..20;

var a : Atype;

b :Btype;

what is the type of a + b?Certainly it is neither Atype nor Btype, since the possiblevalues range

from10 to 40.

1. The usual answer in Pascal and its descendants isto say that the result of any arithmetic

operation on a subrange has the subrange‘sbase type, in this case integer.

2. To avoid the expenseof some unnecessary checks, a compiler may keep track at compile time

of the

largest and smallest possible values of each expression, in essence computing theanonymous 10.

. . 40 type.

3. In languages like Ada, the type of an arithmetic expression assumes specialsignificance in the

header of a for loop, because it determines thetype of the index variable.

CompositeTypes

1. Most built-in operators in most languages take operands of built-in types.

2. Type inference becomes an issue when an operation on composites yields aresult of a different

type than the operands.

Type inference on stringoperations:

Character strings provide a simple example. In Pascal, the literal string 'abc'has type array [1..3]

of char.

1. In Ada, the analogous string (denoted "abc")is considered to have an incompletely specified

type that is compatible with anythree-element array of characters.

2. In the Ada expression "abc" & "defg", "abc"is a three-character array, "defg" is a four-

character array, and the result is aseven-character array formed by concatenating the two.

3. The seven-character result of the concatenation could beassigned into an array of type array

(1..7) of character or into an array oftype array (weekday) of character, or into any other seven-

element character

array.

CSE DEPARTMENT, NCERC PAMPADY Page 53

Type inference for sets:

1. Operations on composite values also occur when manipulating sets. Pascal andModula, for

example, support union (+), intersection (*), and difference (-) onsets of discrete values.

2. Set operands are said to have compatible types if theirelements have the same base type T.

2.3RECORDS (STRUCTURES) AND VARIANTS (UNIONS)

Record types allow related data of heterogeneous types to be stored and manipulatedtogether.

1. Some languages (notably Algol 68, C, C++, and Common Lisp)use the term structure

(declared with the keyword struct) instead of record.

2. Fortran 90 simply calls its records ―types‖: they are the only formof programmerdefinedtype

other than arrays, which have their own special syntax.

3. Java has no distinguished notion of struct; its programmersuse classes in all cases.

4. C# uses a reference model for variables of class types,and a value model for variables of struct

types.

2.3.1Syntax and Operations

A C struct

In C, a simple record might be defined as follows.

struct element {

char name[2];

intatomic_number;

doubleatomic_weight;

_Bool metallic;

};

A Pascal record

In Pascal, the corresponding declarations would be

typetwo_chars = packed array [1..2] of char;

type element = record

name :two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean

end;

Accessing record fields

Each of the record components is known as a field. To refer to a given field of a

record, most languages use ―dot‖ notation. In C:

element copper;

const double AN = 6.022e23; /* Avogadro‘s number */

...

CSE DEPARTMENT, NCERC PAMPADY Page 54

copper.name[0] = 'C'; copper.name[1] = 'u';

double atoms = mass / copper.atomic_weight * AN;

Nested records

Most languages allow record definitions to be nested. Again in C:

Nested records

struct ore {

char name[30];

struct {

char name[2];

intatomic_number;

doubleatomic_weight;

_Bool metallic;

} element_yielded;

}

ML records and tuples

1. ML differs from most languages in specifying thatthe order of record fields is insignificant.

The ML record value {name = "Cu",atomic_number = 29, atomic_weight = 63.546, metallic =

true} is thesame as the

value {atomic_number = 29, name = "Cu", atomic_weight =63.546, metallic = true} (they will

test true for equality).

2. ML tuples aredefined as abbreviations for records whose field names are small integers. The

values ("Cu", 29), {1 = "Cu", 2 = 29}, and {2 = 29, 1 = "Cu"} will all testtrue for equality.

2.3.2Memory Layout and Its Impact

1. The fields of a record are usually stored in adjacent locations in memory. In itssymbol table,

the compiler keeps track of the offset of each field within each recordtype.

2. When it needs to access a field, the compiler typically generates a load orstore instruction with

displacement addressing.

3. For a local object, the base registeris the frame pointer; the displacement is the sum of the

record‘s offset from theregister and the field‘s offsetwithin the record.

4. On a RISC machine, a global recordis accessed in a similar way, using a dedicated globals

pointer register as base.

5. On aCISC machine, the compiler may access the field directly at its absolute address or,if

many fields are to be accessed in a short period of time, it may load a temporaryregister with the

(absolute) address of the record and then use the field‘s offset asdisplacement.

Memory layout for a record type

CSE DEPARTMENT, NCERC PAMPADY Page 55

Figure 2.1.Likely layout in memory for objects of type element on a 32-bit machine. Alignment

restrictions lead to the shaded ―holes.‖

A layout for our element type on a 32-bit machine appears inFigure 2.1.

1. Because the name field is only two characters long, it occupies two bytesin memory.

2. Since atomic_number is an integer, and must (on most machines)be word-aligned, there is a

two-byte ―hole‖ between the end of name and thebeginning of atomic_number.

3. Similarly, since Boolean variables (in most languageimplementations) occupy a single byte,

there are three bytes of empty spacebetween the end of the metallic field and the next aligned

location. In an arrayof elements, most compilers would devote 20 bytes to every member of

thearray.

4. In a language with a value model of variables, nested records are naturallyembedded in the

parent record, where they function as large fields with word ordouble-word alignment.

5. In a language with a reference model of variables, fieldsof record type are typically references

to data in another location. The difference isa matter not only of memory layout, but also of

semantics.

Nested records as values

In Pascal, the followingprogram prints a 0.

type

T = record

j : integer;

end;

S = record

i : integer;

n : T;

end;

var s1, s2 : S;

...

s1.n.j := 0;

s2 := s1;

s2.n.j := 7;

CSE DEPARTMENT, NCERC PAMPADY Page 56

writeln(s1.n.j); (* prints 0 *)

The assignment of s1 into s2 copies the embedded T.

Nested records as references

By contrast, the following Java program prints a 7. (Simple classes in Java playthe role of

structs.)

class T {

publicint j;

}

class S {

publicinti;

public T n;

}

...

S s1 = new S();

s1.n = new T(); // fields initialized to 0

S s2 = s1;

s2.n.j = 7;

System.out.println(s1.n.j); // prints 7

Here the assignment of s1 into s2 has copied only the reference, so s2.n.j is analias for s1.n.j.

Layout of packed types

A few languages—notably Pascal—allow the programmer to specify that arecord type (or an

array, set, or file type) should be packed:

type element = packed record

name :two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean

end;

1. The keyword packed indicates that the compiler should optimize for space insteadof speed. In

most implementations a compiler will implement a packed recordwithout holes, by

simply―pushing the fields together.‖

2. To access a nonaligned field,however, it will have to issue amulti-instruction sequence that

retrieves the piecesof the field from memory and then reassembles them in a register.

CSE DEPARTMENT, NCERC PAMPADY Page 57

Figure 2.2 Likely memory layout for packed element records. The atomic_number and

atomic_weight fields are nonaligned, and can only be read or written (on most machines) via

multi-instruction sequences.

3. Ada, Modula-3, and C provide more elaboratepacking mechanisms, which allow the

programmer to specify precisely how manybits are to be devoted to each field.

Assignment and comparison of records

Most languages allow a value to be assigned to an entire record in a singleoperation:

my_element := copper;

Minimizing holes by sorting fields

1. holes in records waste space.

2. Packingeliminates holes, but at potentially heavy cost in access time.

3. A compromise,adopted by some compilers, is to sort a record‘s fields according to the size of

their alignment constraints.

4. All byte-aligned fields might come first, followed byany half-word aligned fields, word-

aligned fields, and (if the hardware requires)double-word–aligned fields.

5. For element type, the resulting rearrangementis shown in Figure 2.3.

Figure 2.3 Rearranging record fields to minimize holes. By sorting fields according to the sizeof

their alignment constraint, a compiler can minimize the space devoted to holes, while keepingthe

fields aligned.

CSE DEPARTMENT, NCERC PAMPADY Page 58

2.3.3 With Statements

In programs with complicated data structures, manipulating the fields of a deeply

nested record can be awkward:

ruby.chemical_composition.elements[1].name := ‘Al‘;

ruby.chemical_composition.elements[1].atomic_number := 13;

ruby.chemical_composition.elements[1].atomic_weight := 26.98154;

ruby.chemical_composition.elements[1].metallic := true;

Pascal provides a with statement to simplify such constructions:

withruby.chemical_composition.elements[1] do begin

name := ‘Al‘;

atomic_number := 13;

atomic_weight := 26.98154;

metallic := true

end;

2.3.4 Variant Records (Unions)

Programming languages of the 1960s and 1970s were designed in an era of severememory

constraints.

1. Many languages allowed the programmer to specify that certain variables(presumably ones

that would never be used at the same time) should beallocated ―on top of‖ one another, sharing

the same bytes in memory.

2. C‘s syntax,

heavily influenced by Algol 68, looks very much like a struct:

union {

inti;

double d;

_Bool b;

};

3. Unions have been used for two main purposes.

i. Insystems programs, where unions allow the same set of bytes to be interpretedin different

ways at different times.

ii. The second common purpose for unions is to represent alternative sets offields within a

record.

2.4 ARRAYS

1. Composite data types.

2. Beginning with Fortran I.

3. A mapping from an indextype to a component or element type.

CSE DEPARTMENT, NCERC PAMPADY Page 59

 i. Fortran require that the index type be integer;

 ii. Fortran 77 require that the element type of an array be scalar.

 iii. Fortran 90 allow any element type

 iv. scripting languages allow non discrete index types.

2.4.1 Syntax and Operations

Most languages refer to an element of an array by appending a subscript—delimited by

parentheses or square brackets—to the name of the array.

i. In FortranandAda, one says A(3);

ii. In Pascal and C, one says A[3]

Declarations

1. In C:

 char upper[26];

 In C, the lower bound of an index range is always zero: the indices of an n-elementarray

are 0 . . . n−1.

2. In Fortran:

 character, dimension (1:26) :: upper

character (26) upper ! shorthand notation

In Fortran, the lower bound of the index range is one bydefault.

3. In Pascal:

 var upper : array [‘a‘..‘z‘] of char;

 arrays are declared with an array constructor

4. In Ada:

 upper : array (character range ‘a‘..‘z‘) of character;

Multidimensional arrays

1. Ada

 mat : array (1..10, 1..10) of real;

2. Fortran

 real, dimension (10,10) :: mat

3. In Modula-3

 VAR mat : ARRAY [1..10], [1..10] OF REAL;

 Array constructor.

Multidimensional vs built-up arrays

In Ada

 mat1 : array (1..10, 1..10) of real;

is not the same as

type vector is array (integer range <>) of real;

type matrix is array (integer range <>) of vector (1..10);

mat2 : matrix (1..10);

i. Variable mat1 is a two-dimensional array;can access individual real numbers as mat1(3, 4);

CSE DEPARTMENT, NCERC PAMPADY Page 60

ii. mat2 is an array of one-dimensionalarrays.with the latter we must say mat2(3)(4)

Arrays of arrays in C

In C, one must also declare an array of arrays, and use two-subscript notation

 double mat[10][10];

1. Given this definition, mat[3][4] denotes an individual element of the array

2. mat[3] denotes a reference

 either to the third row of the array or to the first element of that row, depending on

context.

Slices and Array Operations

A slice or section is a rectangular portion of an array.

Fortran 90 and SingleAssignment C provide extensive facilities for slicing, as do many scripting

languages,

including Perl, Python, Ruby, and R.

 real, dimension (10,10) :: mat

1. Ada provides more limited support: a slice is simply a contiguous range of elementsin a one-

dimensional array.

operations

1.selection ofan element

2. assignment

3. compared for equality (Ada and Fortran 90)

 Ada allows one-dimensional arrays whose elements arediscrete to be compared for

lexicographic ordering : A < B if the first element of Athat is not equal to the corresponding

element of B is less than that correspondingelement.

4. Ada allows the built-in logical operators (or, and, xor) to be appliedto Boolean arrays.

5. Fortran 90

 i. A + B is an arrayeach of whose elements is the sum of the corresponding elements of A

and B

 ii. Fortran 90 provides a huge collection of intrinsic, or built-in functions.Morethan 60 of

these (including logic and bit manipulation, trigonometry, logs andexponents, type conversion,

and string manipulation) are defined on scalars, butwill also perform their operation element-

wise if passed arrays as arguments.

6. APL, an array manipulation language developed by Iverson and others in the earlyto mid-

1960s.

2.4.2 Dimensions, Bounds, and Allocation

1. static shape arrays(the shape of the array (includingbounds) was specified in the declaration)

 storage canbe managed in the usual way:

static allocation for arrays whose lifetime is theentire program;

2.stack allocation for arrays whose lifetime is an invocation of asubroutine;

3. heap allocation for dynamically allocated arrays with more generallifetime.

CSE DEPARTMENT, NCERC PAMPADY Page 61

Figure 2.4 Array slices (sections) in Fortran 90. Much like the values in the header of an

enumeration-controlled loop , a : b : c in a subscript indicates positions a, a + c, a +2c, . . .

through b. If a orb is omitted, the corresponding bound of the array is assumed. If c is omitted, 1

is assumed. It is even possible to use negative values of c in order to select positions inreverse

order. The slashes in the second subscript of the lower right example delimit an explicitlist of

positions.

Descriptors or Dope Vectors

During compilation, the symbol table maintains dimension and bounds informationfor every

array in the program.When the number and bounds of array dimensions are not statically known,

the compiler must generate code to look them up in a dope vector at run time.

1. a dope vector will contain the lower bound of each dimension andthe size of each dimension

other than the last.

2. If the language implementationperforms dynamic semantic checks for out-of-bounds

subscripts in array

references, then the dope vector may contain upper bounds as well.

3. The contents of the dope vector are initialized at elaboration time, or wheneverthe number or

bounds of dimensions change.

Fortran 90- notion of shape includes dimension sizes but not lower bounds, an

assignmentstatementmay need to copy not only the data of an array, but dope vector contentsas

well.

Stack Allocation

CSE DEPARTMENT, NCERC PAMPADY Page 62

Subroutine parameters are the simplest example of dynamic shape arrays.

Pascal: allow array parameters to have bounds thatare symbolic names rather than constants. It

calls these parameters conformantarrays:

Here lower and upper are initialized at the time of call, providing DotProductwith the

information it needs to understand the shape of A and B. In effect, lowerand upper are extra

parameters of DotProduct.

Conformant arrays are highly useful in scientific applications, many of whichrely on numerical

libraries for linear algebra and the manipulation of systems ofequations. Since different programs

use arrays of different shapes, the subroutinesin these libraries need to be able to take arguments

whose size is not known at

compile time.

Pascal allows conformant arrays to be passed by reference or by value.

Stack allocation of elaborated arrays

CSE DEPARTMENT, NCERC PAMPADY Page 63

Figure 2.5 Elaboration-time allocation of arrays in Ada or C99. Here M is a square

twodimensional array whose bounds are determined by a parameter passed to foo at run time.

The compiler arranges for a pointer to M and a dope vector to reside at static offsets from the

frame pointer. M cannot be placed among the other local variables because it would prevent

those higher in the frame from having static offsets. Additional variable-size arrays or records

are easily accommodated.

Every local object can be found using a known offset fromthe frame pointer.

1. divide the stack frame into a fixedsize-part and a variabl-size part

2. An object whose size is statically known goes inthe fixed-size part.

3. An object whose size is not known until elaboration time goesin the variable-size part, and a

pointer to it, together with a dope vector, goes inthe fixed-size part.

Heap Allocation

1. Arrays that can change shape at arbitrary times are sometimes said to be fullydynamic

2. fully dynamic arrays must be allocated in the heap

Dynamic strings in Java and C#

String variables in these languages are references toimmutable string objects:

Here the declaration String s introduces a string variable, which we initializewith a reference to

the constant string "short". In the subsequent assignment, +creates a new string containing the

concatenation of the old s and the constant" but sweet"; s is then set to refer to this new string,

rather than the old.

3. If the number of dimensions of a fully dynamic array is statically known, thedope vector can

be kept, together with a pointer to the data, in the stack frameof the subroutine in which the array

was declared. If the number of dimensionscan change, the dope vectormust generally be placed

at the beginning of the heapblock instead.

4. In the absence of garbage collection, the compiler must arrange to reclaim thespace occupied

by fully dynamic arrays when control returns from the subroutinein which theywere declared.

Space for stack-allocated arrays is of course reclaimedautomatically by popping the stack.

2.4.3 Memory Layout

1. one-dimensional array

i. the second element of the array is storedimmediately after the first (subject to

alignment constraints); the third is storedimmediately after the second, and so forth.

ii. For arrays of records

 it is commonfor each subsequent element to be aligned at an address appropriate for any

type

2. multidimensional arrays

CSE DEPARTMENT, NCERC PAMPADY Page 64

it still makes sense to put the first element ofthe array in the array‘s first memory location. But

which element comes next?

i. row-major

consecutive locations in memory hold elements that differ byone in the final subscript (except at

the ends of rows)

 e.g., A[2, 4]is followed by A[2, 5].

The advantage ofrow-major order is that it makes it easy to define a multidimensional array as

anarray of subarrays

ii. column-major

consecutive locations hold elementsthat differ by one in the initial subscript

 e.g., A[2, 4] is followed by A[3, 4]

theelements of the subarray would not be contiguous in memory

Array layout and cache performance

a) When code traverses a small array, all or mostof its elements are likely to remain in the cache

through the end of the nestedloops, and the orientation of cache lines will not matter.

Figure 2.6 Row- and column-major memory layout for two-dimensional arrays.

In row-majororder, the elements of a row are contiguous in memory; in column-major

order, the elementsof a column are contiguous. The second cache line of each array is

shaded, on the assumption

that each element is an eight-byte floating-point number, that cache lines are 32 bytes

long (acommon size), and that the array begins at a cache line boundary. If the array is

indexed fromA[0,0] to A[9,9], then in the row-major case elements A[0,4] through

A[0,7] share a cache line;in the column-major case elements A[4,0] through A[7,0] share

a cache line.

b) For a large array, however,lines that are accessed early in the traversal are likely to be evicted

to make

room for lines accessed later in the traversal.

c) If array elements are accessed inorder of consecutive addresses, then each miss will bring into

the cache not onlythe desired element, but the next several elements as well.

CSE DEPARTMENT, NCERC PAMPADY Page 65

d) If elements are accessedacross cache lines instead then there is a good chance that almost

everyaccess will result in a cache miss, dramatically reducing the performance of thecode.

In C,

In Fortran:

Row-Pointer Layout

Rather than require the rows of an array to be adjacent, they allow them tolie anywhere in

memory, and create an auxiliary array of pointers to the rows.

1. If the array has more than two dimensions, it may be allocated as an array ofpointers

toarraysofpointers to. . . .This row-pointer memory layout requires morespace in most cases.

2. Advantages of Row-Pointer Layout

i. First, it sometimes allowsindividual elements of the array to be accessed more quickly,

especially on CISC

machines with slow multiplication instructions.

ii.Second, it allows the rows to have different lengths, withoutdevoting space to holes at the ends

of the rows. This representation is sometimescalled a ragged array. The lack of holes may

sometimes offset the increased spacefor pointers.

iii. Third, it allows a program to construct an array from preexistingrows without copying.

3. C, C++, and C#provide both contiguous and row-pointer organizations for

multidimensionalarrays.

Java uses therow-pointer layout for all arrays.

4. The contiguous layout is a true multidimensionalarray.

5. The row-pointer layout is an array of pointers to arrays.

CSE DEPARTMENT, NCERC PAMPADY Page 66

Figure 2.7 Contiguous array allocation vs row pointers in C

The declaration on the left is a true two-dimensional array.Theslashed boxes are NUL bytes; the

shaded areas are holes. The declaration on the right is a ragged array of pointers to arraysof

characters. In both cases, we have omitted bounds in the declaration that can be deduced from

the size of the initializer(aggregate). Both data structures permit individual characters to be

accessed using double subscripts, but the memory layout(and corresponding address arithmetic)

is quite different.

Contiguous vs row-pointerarray layout

By far the most commonuse of the row-pointer layout inCis to represent arraysof strings. A

typical example appears in Figure 2.7. In this example (representingthe days of the week), the

row-pointer memory layout consumes 57 bytes forthe characters themselves (including a NUL

byte at the end of each string), plus28 bytes for pointers (assuming a 32-bit architecture), for a

total of 85 bytes.The contiguous layout alternative devotes 10 bytes to each day (room enoughfor

Wednesday and its NUL byte), for a total of 70 bytes. The additional spacerequired for the row-

pointer organization comes to 21%.

Address Calculations

Indexing a contiguous array

For the usual contiguous layout of arrays, calculating the address of a particularelement is

somewhat

complicated, but straightforward. Suppose a compiler isgiven the following declaration for a

three-dimensional array:

A : array [L1 . .U1] of array [L2 . .U2] of array [L3 . .U3] of elem_type;

Let us define constants for the sizes of the three dimensions:

S3 = size of elem_type

CSE DEPARTMENT, NCERC PAMPADY Page 67

S2 = (U3 − L3 + 1) × S3

S1 = (U2 − L2 + 1) × S2

Here the size of a row (S2) is the size of an individual element (S3) times thenumber of elements

in a row (assuming row-major layout). The size of a plane(S1) is the size of a row (S2) times the

number of rows in a plane. The address ofA[i, j, k] is then

address of A

+ (i − L1) × S1

+ (j − L2) × S2

+ (k − L3) × S3

if the bounds of the array are known at compiletime, then S1, S2, and S3 are compile-time

constants, and the subtractions of lowerbounds can be distributed out of the parentheses:

(i × S1) + (j × S2) + (k × S3) + address of A

−[(L1 × S1) + (L2 × S2) + (L3 × S3)]

Figure 2.8 Virtual location of an array with nonzero lower bounds.

By computing the constantportions of an array index at compile time, we effectively index into

an array whose startingaddress is offset in memory, but whose lower bounds are all zero.

The bracketed expression in this formula is a compile-time constant (assumingthe bounds of A

are statically known). If A is a global variable, then the address ofA is statically known as well,

and can be incorporated in the bracketed expression.If A is a local variable of a subroutine (with

static shape), then the address of Acan be decomposed into a static offset (included in the

bracketed expression) plusthe contents of the frame pointer at run time. We can think of the

address of Aplus the bracketed expression as calculating the location of an imaginary arraywhose

[i, j, k]th element coincides with that of A, but whose lower bound in eachdimension is zero.

This imaginary array is illustrated in Figure 2.8.

Static and dynamic portions of an array index

CSE DEPARTMENT, NCERC PAMPADY Page 68

If i, j, and/or k is known at compile time, then additional portions of thecalculation of the address

of A[i, j, k] will move from the dynamic to the staticpart of the formula shown above. If all of

the subscripts are known, then theentire address can be calculated statically. Conversely, if any

of the bounds ofthe array are not known at compile time, then portions of the calculation

willmove from the static to the dynamic part of the formula. For example, if L1 is notknown until

run time, but k is known to be 3 at compile time, then the calculation

becomes(i × S1) + (j × S2) − (L1 × S1) + address of A − [(L2 × S2) + (L3 × S3) − (3 ×

S3)]Again, the bracketed part can be computed at compile time. If lower bounds arealways

restricted to zero, as they are in C, then they never contribute to run-timecost.

2.5 STRINGS

A string is simply an array of characters.

1. Manylanguages, including C and its descendants, distinguish between literal

characters(usually delimited with single quotes) and literal strings (usually delimited withdouble

quotes)

2. Other languages (e.g., Pascal) make no distinction: a character isjust a string of length one.

3. Most languages also provide escape sequences that allownonprinting characters and quote

marks to appear inside of strings.

4. The set of operations provided for strings is strongly tied to the implementationenvisioned by

the language designer(s)

5. Several languages that do not in generalallow arrays to change size dynamically do provide

this flexibility for strings.

i.First, manipulation of variable-length strings is fundamentalto a huge number of

computer applications, and in some sense ―deserves‖ specialtreatment.

ii. Second, the fact that strings are one-dimensional, have one-byte elements,and never

contain references to anything else makes dynamic-size stringseasier to implement than general

dynamic arrays.

6. Some languages require that the length of a string-valued variable be boundno later than

elaboration time, allowing the variable to be implemented as acontiguous array of characters in

the current stack frame.

7. Pascal and Ada supporta few string operations, including assignment and comparison for

lexicographic

ordering.

8. Cprovides only the ability to create a pointer to astring literal.

9. Other languages allow the length of a string-valued variable to change over itslifetime,

requiring that the variable be implemented as a block or chain of blocksin the heap.

10. ML and Lisp provide strings as a built-in type.

11. C++, Java, and C#provide them as predefined classes of object, in the formal, object-oriented

sense.

CSE DEPARTMENT, NCERC PAMPADY Page 69

12. In all these languages a string variable is a reference to a string.

13. Concatenation andother string operators implicitly create new objects.

14. The space used by objects thatare no longer reachable from any variable is reclaimed

automatically.

2.6 Sets

A programming language set is an unordered collection of an arbitrary number ofdistinct values

of a common type.

1. Sets were introduced by Pascal, and are foundin many more recent languages as well.

2. The type from which elements of a set aredrawn is known as the base or universe type.

3. Set types in Pascal

 Pascal supports sets of any discretetype, and provides union, intersection, and difference

operations:

4. Sets appear in the standardlibraries of many object-oriented languages, including C++, Java,

and C#.

5. There are many ways to implement sets, including arrays, hash tables, andvarious forms of

trees.

2.7 POINTERS AND RECURSIVETYPES

In languages that use a valuemodel of variables, recursive types require the notion of a pointer: a

variable (or

field) whose value is a reference to some object.

1. Pointers were first introducedin PL/I.

2. In some languages (e.g., Pascal, Ada 83, and Modula-3), pointers are restrictedto point only to

objects in the heap.

2.7.1 Syntax and Operations

Operations on pointers include

1. allocation and deallocation of objects in the heap,

2. dereferencing of pointers to access the objects towhich they point,

3. and assignmentof one pointer into another.

CSE DEPARTMENT, NCERC PAMPADY Page 70

The behavior of these operations depends heavily onwhether the language is functional or

imperative

1. Functional languages generally employ a reference model for names

2. Variables in an imperative language may useeither a value or a reference model, or some

combination of the two

Reference Model

1. Tree type in ML

In ML, the datatype mechanism can be used to declare recursive types:

datatypechr_tree = empty | node of char * chr_tree * chr_tree;

Here a chr_tree is either an empty leaf or a node consisting of a character andtwo child trees.

It is natural in ML to include a chr_tree within a chr_tree because everyvariable is a reference.

The tree node (#"R", node (#"X", empty, empty),node (#"Y", node (#"Z", empty, empty), node

(#"W", empty, empty)))

would most likely be represented in memory as shown in Figure 2.9.

Figure 2.9 Implementation of a tree in ML. The abstract (conceptual) tree is shown at the

lower left

2. Tree type in Lisp

In Lisp,which uses a reference model of variables but is not statically typed, ourtree could be

specified textually as ‘(#\R (#\X ()()) (#\Y (#\Z ()()) (#\W()()))).

i.Each level of parentheses brackets the elements of a list.

ii. the outermost such list contains three elements: the character R and nested liststo represent the

left and right subtrees.

iii. each list is a pairof references: one to the head and one to the remainder of the list.

CSE DEPARTMENT, NCERC PAMPADY Page 71

Figure 2.10 Implementation of a tree in Lisp. A diagonal slash through a box indicates a null

pointer. The C and A tags serveto distinguish the two kinds of memory blocks: cons cells and

blocks containing atoms.

At the top levelof the figure, the first cons cell points to R; the second and third point to

nestedlists representing the left and right subtrees. Each block of memory is tagged toindicate

whether it is a cons cell or an atom. An atom is anything other than acons cell; that is, an object

of a built-in type (integer, real, character, string, etc.), ora user-defined structure (record) or

array.

2.7.3 Garbage Collection

Explicit reclamation of heap objects is a serious burden on the programmer and amajor source of

bugs (memory leaks and dangling references).

1. An attractive alternative is to have the language implementationnotice when objects are no

longer useful and reclaim them automatically (otherwise known as garbage collection).

2. Automatic collection is difficult toimplement.

3. Automatic collection also tends tobe slower than manual reclamation.

Reference Counts

When is an object no longer useful?

1. One possible answer is: when no pointers toit exist.

2. The simplest garbage collection technique simply places a counter ineach object that keeps

track of the number of pointers that refer to the object.

3. When the object is created, this reference count is set to 1, to represent the pointerreturned by

the new operation.

4. When one pointer is assigned into another, therun-time system decrements the reference count

of the object formerly referred toby the assignment‘s left-hand side, and increments the count of

the object referredto by the right-hand side.

CSE DEPARTMENT, NCERC PAMPADY Page 72

Figure 2.12 Reference counts and circular lists. The list shown here cannot be found via any

program variable, but because it is circular, every cell contains a nonzero count.

5. When a reference count reaches zero, its object canbe reclaimed.

6. The standard technique to track the location of every pointer information relies on

typedescriptors generated by the compiler.

7. There is one descriptor for every distincttype in the program, plus one for the stack frame of

each subroutine, and onefor the set of global variables.

Tracing Collection

1. A better definition of a ―useful‖ object is one that can be reached by following achain of valid

pointers starting from something that has a name (i.e., somethingoutside the heap).

2. Tracingcollectors work by recursively exploring the heap, starting from external pointers,to

determine what is useful.

Mark-and-Sweep

1. The classic mechanism to identify useless blocks, under thismore accurate definition, is known

as mark-and-sweep

2. It proceeds in three mainsteps, executed by the garbage collector when the amount of free

space remaining

in the heap falls below some minimum threshold.

1. The collector walks through the heap, tentatively marking every block as ―useless.‖

2. Beginning with all pointers outside the heap, the collector recursively exploresall linked data

structures in the program, marking each newly discovered blockas ―useful.‖ (When it encounters

a block that is already marked as ―useful,‖ thecollector knows it has reached the block over some

previous path, and returns

withoutrecursing.)

3. The collector again walks through the heap, moving every block that is stillmarked ―useless‖

to the free list.

Pointer Reversal

CSE DEPARTMENT, NCERC PAMPADY Page 73

As the collector explores the path to a given block, it reverses the pointers it follows,so that each

pointsback to the previous block instead of forward to the next.

Figure 2.13 Heap exploration via pointer reversal

The block currently under examination is indicated by the curr pointer.The previous block is

indicated by the prev pointer. As the garbage collector moves from one block to the next, it

changes thepointer it follows to refer back to the previous block. When it returns to a block it

restores the pointer. Each reversed pointer

must be marked (indicated with a shaded box), to distinguish it from other, forward pointers in

the same block.

1. To return from block X to block U (after part (d) of the figure), the collectorwill use the

reversed pointer in U to restore its notion of previous block (T).

2. Itwill then flip the reversed pointer back to X and update its notion of currentblock to U.

Stop-and-Copy

1. In a language with variable-size heap blocks, the garbage collectorcan reduce external

fragmentation by performing storage compaction.

2. Manygarbage collectors employ a technique known as stop-and-copy that achieves

compactionwhile simultaneously eliminating Steps 1 and 3 in the standard mark-

andsweepalgorithm.

i. Divide the heap into two regions of equal size.

ii. All allocation happens in the first half.

iii. When this half is (nearly) full, the collectorbegins its exploration of reachable data structures.

iv. Each reachable block is copiedinto the second half of the heap, with no external

fragmentation.

Generational Collection

1. exploiting the observation that mostdynamically allocated objects are short-lived.

2. The heap is divided into multipleregions (often two)

CSE DEPARTMENT, NCERC PAMPADY Page 74

3. When space runs low the collector first examines the youngestregion (the ―nursery‖), which it

assumes is likely to have the highest proportionof garbage.

4. Only if it is unable to reclaim sufficient space in this region does thecollector examine the

next-older region.

Conservative Collection

1. Everything that seems to point into a heapblock is in fact a valid pointer, then we can proceed

with mark-and-sweep collection.

2. When space runs low, the collector (as usual) tentatively marks all blocks inthe heap as

useless.

3. It then scans all word-aligned quantities in the stack and inglobal storage.

4. If any of these words appears to contain the address of somethingin the heap, the collector

marks the block that contains that address as useful.

5. Recursively, the collector then scans all word-aligned quantities in the block, andmarks as

useful any other blocks whose addresses are found therein.

6. Finally, the collector reclaims any blocks that are still marked useless.

2.8 LISTS

A list is defined recursively as either the empty list or a pair consisting of an object(which may

be either a list or an atom) and another (shorter) list.

1. Lists are ideallysuited to programming in functional and logic languages.

2. In Lisp, in fact, a program is a list, and can extend itself at run time by constructinga list and

executing it.

3. Lists can also be used in imperative programs.

4. a list class is easy to write in most object-oriented languages.

5. Most scripting languages provide extensive list support.

6. Lists work best in a languagewith automatic garbage collection.

Lists in ML and Lisp

1. lists in ML are homogeneous:every element of the list must have the same type.

i. An ML list is usually a chain of blocks, each ofwhich contains an element and a pointer to the

next block

ii. Clu resembles ML

iii. An ML list is enclosedList notation in square brackets, with elements separated by commas:

[a, b, c, d].

2. Lisp lists, by contrast, areheterogeneous: any object may be placed in a list.

i. A Lisp list is a chainof cons cells, each of which contains two pointers, one to the element and

one to

the next cons cell.

ii. Python and Prolog resemble Lisp.

CSE DEPARTMENT, NCERC PAMPADY Page 75

iii. A Lisplist is enclosed in parentheses, with elements separated by white space: (a b cd).

aproper list: one whose innermostpair consists of the final element and the empty list.

animproper list: whose final pair contains two elements.

3. Lispsystems provide amore general, but cumbersome dotted list notation that capturesboth

proper and improper lists.

4. A dotted list is either an atom (possibly null)or a pair consisting of two dotted lists separated

by a period and enclosed inparentheses. The dotted list (a . (b . (c . (d . null)))) is the same as (a b

cd).

5. The list (a . (b . (c . d))) is improper; its final cons cell contains a pointerto d in the second

position, where a pointer to a list is normally required.

Basic list operations in Lisp

(cons 'a '(b)) =⇒(a b)

(car '(a b)) =⇒a

(car nil) =⇒ ??

(cdr '(a b c)) =⇒(b c)

(cdr '(a)) =⇒nil

(cdr nil) =⇒ ??

(append '(a b) '(c d)) =⇒(a b c d)

Basic list operations in ML

a :: [b] =⇒[a, b]

hd [a, b] =⇒a

hd [] =⇒ run-time exception

tl [a, b, c] =⇒[b, c]

tl [a] =⇒nil

tl [] =⇒ run-time exception

[a, b] @ [c, d] =⇒[a, b, c, d]

list functions

1. test a list to see if it is empty;

2. return the length of a list;

3. return the nth elementof a list, or a list consisting of all but the first n elements;

4. reverse the order of theelements of a list;

5. search a list for elements matching some predicate;

6. apply afunction to every element of a list, returning the results as a list.

2.9 FILES AND INPUT/OUTPUT

1. Interactive I/O generally implies communicationwith human users or physical devices, which

work in parallel with the runningprogram, and whose input to the program may depend on earlier

output from

CSE DEPARTMENT, NCERC PAMPADY Page 76

the program (e.g., prompts).

i. I/O is one of the most difficult aspects of a language to design, and one thatdisplays the least

commonality from one language to the next.

ii. Some languagesprovide built-in file data types and special syntactic constructs for I/O.

iii. Othersrelegate I/O entirely to library packages, which export a (usually opaque) filetype and a

variety of input and output subroutines.

iv. The principal advantage oflanguage integration is the ability to employ non–subroutine-call

syntax, and to

performoperations (e.g., type checking on subroutine calls with varying numbersof parameters)

that may not otherwise be available to library routines

2. Files generally refer to off-line storage implementedby the operating system.

3. Files may be further categorized into

 i. temporary and

 ii. persistent.

4. Temporary files exist for the duration ofa single program run; their purpose is to store

information that is too large to fitin the memory available to the program.

5. Persistent files allow a program to readdata that existed before the program began running,

and to write data that willcontinue to exist after the program has ended.

2.10 EQUALITYTESTING AND ASSIGNMENT

Consider for example the problem of comparing two character strings. Shouldthe expression s = t

determine whether s and t.

are aliases for one another?

occupy storage that is bit-wise identical over its full length?

contain the same sequence of characters?

would appear the same if printed?

1. The second of these tests is probably too low-level to be of interest in most programs;

it suggests the possibility that a comparison might fail because of garbagein currently unused

portions of the space reserved for a string.

2. The other threealternatives may all be of interest in certain circumstances, and may

generatedifferent results.

3. In many cases the definition of equality boils down to the distinction between

l-values and r-values.

4. shallowcomparison: should expressions be consideredequal only if they refer to the same

object,

Under a reference model of variables: a shallow assignment a := bwill make a refer to the object

to which b refers.

CSE DEPARTMENT, NCERC PAMPADY Page 77

Under a value model of variables: a shallow assignment will copy the value of b into a

5.deepcomparison:if the objects to whichthey refer are in some sense equal?

Under a reference model of variables:A deep assignment will create acopy of the object to which

b refers, and make a refer to the copy.

6. Most programming languages employ both shallow comparisons and shallowassignment.

7. Scheme, for example, has three general-purposeequality-testing functions:

(eq? a b) ; do a and b refer to the same object?

(eqv? a b) ; are a and b known to be semantically equivalent?

(equal? a b) ; do a and b have the same recursive structure?

Both eq?andeqv? perform a shallow comparison.

8. Deep assignments are relatively rare.

i. They are used primarily in distributedcomputing, and in particular for parameter passing in

remote procedure call(RPC) systems.

MODULE – 3

 DATA ABSTRACTION, in which the principal purpose of the abstraction is to represent

information

 CONTROL ABSTRACTION, in which the principal purpose of the abstraction is to

perform a well-defined operation

 SUBROUTINES are the principal mechanism for control abstraction in most

programming languages.

Subroutines are the principal mechanism for control abstraction in most programming languages.

A subroutine performs its operation on behalf of a caller, who waits for the subroutine to finish

before continuing execution.

Most subroutines are parameterized: the caller passes arguments that influence the subroutine‘s

behavior, or provide it with data on which to operate. Arguments are also called actual

parameters. They are mapped to the subroutine‘s formal parameters at the time a call occurs.

A subroutine that returns a value is usually called a function.

A subroutine that does not return a value is usually called a procedure.

Most languages require subroutines to be declared before they are used, though a few do not

(including Fortran, C, and Lisp).

Declarations allow the compiler 8to verify that every call to a subroutine is consistent with the

declaration; for example, that it passes the right number and types of arguments.

Each routine, as it is called, is given a new stack frame, or activation record, at the top of the

stack. This frame may contain arguments and/or return values, bookkeeping information

CSE DEPARTMENT, NCERC PAMPADY Page 78

(including the return address and saved registers), local variables, and/or temporaries. When a

subroutine returns, its frame is popped from the stack.

At any given time, the stack pointer register contains the address of either the last used location

at the top of the stack, or the first unused location, depending on convention. The frame pointer

register contains an address within the frame.

Objects in the frame are accessed via displacement addressing with respect to the frame pointer.

If the size of an object (e.g., a local array) is not known at compile time, then the object is placed

in a variable-size area at the top of the frame; its address and dope vector (descriptor) are stored

in the fixed-size portion of the frame, at a statically known offset from the frame pointer. If there

are no variable-size objects, then every object within the frame has a statically known offset from

the stack pointer, and the implementation may dispense with the frame pointer, freeing up a

register for other use. If the size of an argument is not known at compile time, then the argument

may be placed in a variable-size. portion of the frame below the other arguments, with its address

and dope vector at known offsets from the frame pointer. Alternatively, the caller may simply

pass a temporary address and dopevector, counting on the called routine to copy the argument

into the variable-size area at the top of the frame.

In a language with nested subroutines and static scoping (e.g., Pascal, Ada, ML, Common Lisp,

or Scheme), objects that lie in surrounding subroutines, and that are thus neither local nor global,

can be found by maintaining a static chain. Each stack frame contains a reference to the frame of

the lexically surrounding subroutine. This reference is called the static link. By analogy, the

saved value of the frame pointer, which will be restored on subroutine return, is called the

dynamic link. The static and dynamic links may or may not be the same, depending on whether

CSE DEPARTMENT, NCERC PAMPADY Page 79

the current routine was called by its lexically surrounding routine, or by some other routine

nested in that surrounding routine.

Whether or not a subroutine is called directly by the lexically surrounding routine, we can be

sure that the surrounding routine is active; there is no other way that the current routine could

have been visible, allowing it to be called. If subroutine D is called directly from B, then clearly

B‘s frame will already be on the stack. How else could D be called? It is not visible in A or E,

because it is nested inside of B. A moment‘s thought makes clear that it is only when control

enters B (placing B‘s frame on the stack) that D comes into view. It can therefore be called by C,

or by any other routine (not shown) that is nested inside C or D, but only because these are also

within B.

CALLING SEQUENCES

Maintenance of the subroutine call stack is the responsibility of the calling sequence—the code

executed by the caller immediately before and after a subroutine call—and of the prologue (code

executed at the beginning) and epilogue (code executed at the end) of the subroutine itself.

Sometimes the term ―calling sequence‖ is used to refer to the combined operations of the caller,

the prologue, and the epilogue.

Tasks that must be accomplished on the way into a subroutine include passing parameters,

saving the return address, changing the program counter, changing the stack pointer to allocate

space, saving registers (including the frame pointer) that contain important values and that may

be overwritten by the callee, changing the frame pointer to refer to the new frame, and executing

initialization code for any objects in the new frame that require it.

Tasks that must be accomplished on the way out include passing return parameters or function

values, executing finalization code for any local objects that require it, de-allocating the stack

frame (restoring the stack pointer), restoring other saved registers (including the frame pointer),

and restoring the program counter. Some of these tasks (e.g., passing parameters) must be

performed by the caller, because they differ from call to call.

Most of the tasks, however, can be performed either by the caller or the callee. In general, we

will save space if the callee does as much work as possible: tasks performed in the callee appear

only once in the target program, but tasks performed in the caller appear at every call site, and

the typical subroutine is called in more than one place.

Maintaining the Static Chain

In languages with nested subroutines, at least part of the work required to maintain the static

chain must be performed by the caller, rather than the callee, because this work depends on the

lexical nesting depth of the caller. The standard approach is for the caller to compute the callee‘s

static link and to pass it as an extra, hidden parameter.

Two subcases arise:

1. The callee is nested (directly) inside the caller.

In this case, the callee‘s static link should refer to the caller‘s frame. The caller therefore passes

its own frame pointer as the callee‘s static link.

CSE DEPARTMENT, NCERC PAMPADY Page 80

2. The callee is k ≥0 scopes ―outward‖—closer to the outer level of lexical nesting.

In this case, all scopes that surround the callee also surround the caller

(otherwise the callee would not be visible). The caller dereferences its own

static link k times and passes the result as the callee‘s static link.

A Typical Calling Sequence

The stack pointer (sp) points to the first unused location on the stack (or the

last used location, depending on the compiler and machine). The frame pointer (fp) points to a

location near the bottom of the frame. Space for all arguments is reserved in the stack, even if the

compiler passes some of them in registers (the callee will need a place to save them if it calls a

nested routine).

To maintain this stack layout, the calling sequence might operate as follows.

The caller

1. saves any caller-saves registers whose values will be needed after the call

2. computes the values of arguments and moves them into the stack or registers

3. computes the static link (if this is a language with nested subroutines), and passes it as an

extra, hidden argument

CSE DEPARTMENT, NCERC PAMPADY Page 81

4. uses a special subroutine call instruction to jump to the subroutine, simultaneously passing the

return address on the stack or in a register

In its prologue, the callee

1. allocates a frame by subtracting an appropriate constant from the sp

2. saves the old frame pointer into the stack, and assigns it an appropriate new value

3. saves any callee-saves registers that may be overwritten by the current routine (including the

static link and return address, if they were passed in registers)

After the subroutine has completed, the epilogue

1. moves the return value (if any) into a register or a reserved location in the stack

2. restores callee-saves registers if needed

3. restores the fp and the sp

4. jumps back to the return address

Finally, the caller

1. moves the return value to wherever it is needed

2. restores caller-saves registers if needed

Special-Case Optimizations

Many parts of the calling sequence, prologue, and epilogue can be omitted in common cases. If

the hardware passes the return address in a register, then a leaf routine (a subroutine that makes

no additional calls before returning) can simply leave it there; it does not need to save it in the

stack. Likewise it need not save the static link or any caller-saves registers.

A subroutine with no local variables and nothing to save or restore may not

even need a stack frame on a RISC machine. The simplest subroutines (e.g.,

library routines to compute the standard mathematical functions) may not touch memory at all,

except to fetch instructions: they may take their arguments in registers, compute entirely in

(caller-saves) registers, call no other routines, and return their results in registers. As a result they

may be extremely fast.

Displays

One disadvantage of static chains is that access to an object in a scope k levels out requires that

the static chain be dereferenced k times. If a local object can be loaded into a register with a

single (displacement mode) memory access, an object k levels out will require k + 1 memory

accesses. This number can be reduced to a constant by use of a display.

Case Studies: C on the MIPS; Pascal on the x86

Calling sequences differ significantly from machine to machine and even compiler to compiler

(though typically a hardware manufacturer publishes a suggested set of conventions for a given

architecture, to promote interoperability among program components produced by different

compilers). Some of the most significant differences can be found in a comparison of CISC and

RISC conventions.

 Compilers for CISC machines tend to pass arguments on the stack; compilers for RISC

machines tend to pass arguments in registers.

CSE DEPARTMENT, NCERC PAMPADY Page 82

 Compilers for CISC machines usually dedicate a register to the frame pointer; compilers

for RISC machines often do not.

 Compilers for CISC machines often rely on special-purpose instructions to Implement

parts of the calling sequence; available instructions on a RISC machines are typically

much simpler.

In-Line Expansion

As an alternative to stack-based calling conventions, many language implementations allow

certain subroutines to be expanded in-line at the point of call. A copy of the ―called‖ routine

becomes a part of the ―caller‖; no actual subroutine call occurs.

In-line expansion avoids a variety of overheads, including space allocation, branch delays from

the call and return, maintaining the static chain or display, and (often) saving and restoring

registers.

It also allows the compiler to perform code improvements such as global register allocation,

instruction scheduling, and common sub expression elimination across the boundaries between

subroutines, something that most compilers can‘t do otherwise.

QUESTION BANK

1. What is a subroutine calling sequence? What does it do? What is meant by the subroutine

prologue and epilogue?

2. How do calling sequences typically differ in CISC and RISC compilers?

3. Describe how to maintain the static chain during a subroutine call.

4. What is a display? How does it differ from a static chain?

5. What are the purposes of the stack pointer and frame pointer registers? Why does a subroutine

often need both?

6. Why do RISC machines typically pass subroutine parameters in registers rather than on the

stack?

7. List the optimizations that can be made to the subroutine calling sequence in important special

cases (e.g., leaf routines).

8. How does an in-line subroutine differ from a macro?

9. Under what circumstances is it desirable to expand a subroutine in-line?

PARAMETER PASSING

Most subroutines are parameterized: they take arguments that control certain aspects of their

behavior, or specify the data on which they are to operate.

Parameter names that appear in the declaration of a subroutine are known

as formal parameters.

Variables and expressions that are passed to a subroutine in a particular call are known as actual

parameters.

Most languages use a prefix notation for calls to user-defined subroutines, with the subroutine

name followed by a parenthesized argument list. Lisp places the function name inside the

parentheses, as in (max a b). ML allows the programmer to specify that certain names represent

infix operators, which appear between a pair of arguments:

CSE DEPARTMENT, NCERC PAMPADY Page 83

infixr 8 tothe; (* exponentiation *)

 fun x tothe 0 = 1.0

|x tothe n = x * (x tothe(n-1)); (* assume n >= 0 *)

The infixr declaration indicates that tothe will be a right-associative binary

infix operator, at precedence level 8 (multiplication and division are at level 7, addition and

subtraction at level 6).

Fortran 90 also allows the programmer to define new infix operators, but it requires their names

to be bracketed with periods (e.g., A .cross. B), and it gives them all the same precedence.

Smalltalk uses infix (or ―mixfix‖) notation (without precedence) for all its operations.

Control abstraction in Lisp and Smalltalk

The uniformity of Lisp and Smalltalk syntax makes control abstraction particularly effective:

user-defined subroutines (functions in Lisp, ―messages‖ in Smalltalk) use the same style of

syntax as built-in operations. As an example, consider

if. . . then . . . else:

if a > b then max := a else max := b; (* Pascal *)

(if (> a b) (setf max a) (setf max b)) ; Lisp

(a > b) ifTrue: [max <- a] ifFalse: [max <- b]. "Smalltalk"

In Pascal or C it is clear that if. . . then . . . else is a built-in language construct: it does not look

like a subroutine call.

In Lisp and Smalltalk, on the other hand, the analogous conditional constructs are syntactically

indistinguishable from user-defined operations. They are in fact defined in terms of simpler

concepts, rather than being built in, though they require a special mechanism to evaluate their

arguments in normal, rather than applicative, order

Parameter Modes

Suppose for the moment that x is a global variable in a language with a value model of variables,

and that we wish to pass x as a parameter to subroutine p:

 p(x);

From an implementation point of view, we have two principal alternatives: we may provide p

with a copy of x’s value, or we may provide it with x’s address.

The two most common parameter-passing modes, called call-by-value and callby- reference, are

designed to reflect these implementations.

 With value parameters, each actual parameter is assigned into the corresponding formal

parameter when a subroutine is called; from then on, the two are independent.

 With reference parameters, each formal parameter introduces, within the body of the

subroutine, a new name for the corresponding actual parameter.

CSE DEPARTMENT, NCERC PAMPADY Page 84

If the actual parameter is also visible within the subroutine under its original name (as will

generally be the case if it is declared in a surrounding scope), then the two names are aliases for

the same object, and changes made through one will be visible through the other. In most

languages

an actual parameter that is to be passed by reference must be an l-value; it cannot be the result of

an arithmetic operation, or any other value without an address.

As a simple example, consider the following pseudocode:

x : integer – – global

procedure foo(y : integer)

y := 3

print x

. . .

x := 2

foo(x)

print x

 If y is passed to foo by value, then the assignment inside foo has no visible effect— y is

private to the subroutine—and the program prints 2 twice.

 If y is passed to foo by reference, then the assignment inside foo changes x—y is just a

local name for x—and the program prints 3 twice.

If the purpose of call-by-reference is to allow the called routine to modify the actual

parameter, we can achieve a similar effect using call-by-value/result, a mode first introduced

in Algol W.

Like call-by-value, call-by-value/result copies the actual parameter into the formal parameter

at the beginning of subroutine execution.

Unlike call-by-value, it also copies the formal parameter back into the actual parameter when

the subroutine returns.

In the psuedocode given above - value/result would copy result x into y at the beginning of

foo, and y into x at the end of foo.

Because foo accesses x directly in-between, the program‘s visible behavior would be

different than it was with call-by-reference: the assignment of 3 into y would not affect x

until after the inner print statement, so the program would print 2 and then 3.

In Pascal, parameters are passed by value by default; they are passed by reference if preceded

by the keyword var in their subroutine header‘s formal parameter list.

Parameters in C are always passed by value, though the effect for arrays is unusual: because

of the interoperability of arrays and pointers in C, what is passed by value is a pointer;

changes to array elements accessed through this pointer are visible to the caller.

To allow a called routine to modify a variable other than an array in the caller‘s scope, the C

programmer must pass the address of the variable explicitly:

CSE DEPARTMENT, NCERC PAMPADY Page 85

void swap(int *a, int *b) { int t = *a; *a = *b; *b = t; }

...

swap(&v1, &v2);

Fortran passes all parameters by reference, but does not require that every actual parameter

be an l-value. If a built-up expression appears in an argument list, the compiler creates a

temporary variable to hold the value, and passes this variable by reference.

A Fortran subroutine that needs to modify the values of its formal parameters without

modifying its actual parameters must copy the values

into local variables, and modify those instead.

Call-by-Sharing

Call-by-value and call-by-reference make the most sense in a language with a value model of

variables: they determine whether we copy the

variable or pass an alias for it. Neither option really makes sense in a language like Smalltalk,

Lisp, ML, or Clu, in which a variable is already a reference.

Here it is most natural simply to pass the reference itself, and let the actual and formal

parameters refer to the same object. Clu calls this

mode call-by-sharing. It is different from call-by-value because, although we do copy the

actual parameter into the formal parameter, both of them are references; if we modify the

object to which the formal parameter refers, the program will be able to see those changes

through the actual parameter after the subroutine returns.

Call-by-sharing is also different from call-by-reference, because although the called routine

can change the value of the object to which the actual parameter refers, it cannot change the

identity of that object.

The Purpose of Call-by-Reference In a language that provides both value and reference

parameters (e.g., Pascal orModula), there are two principal reasons why the programmer

might choose one over the other. First, if the called routine is supposed to change the

value of an actual parameter (argument), then the programmer must pass the parameter by

reference. Conversely, to ensure that the called routine cannot modify the argument, the

programmer can pass the parameter by value.

Second, the implementation of value parameters requires copying actuals to formals, a

potentially time-consuming operation when arguments are large. Reference parameters can

be implemented simply by passing an address

EXCEPTION HANDLING.

An exception can be defined as an unexpected—or at least unusual—condition that arises

during program execution, and that cannot easily be handled in the local context. It may be

detected automatically by the language implementation, or the program may raise it

explicitly. The most common exceptions are various sorts of run-time errors. In an I/O

library, for example, an input routine may encounter the end of its file before it can read a

requested value, or it may find

CSE DEPARTMENT, NCERC PAMPADY Page 86

punctuation marks or letters on the input when it is expecting digits. To cope with such errors

without an exception-handling mechanism, the programmer has basically three options, none

of which is entirely satisfactory:

1. ―Invent‖ a value that can be used by the caller when a real value could not be returned.

2. Return an explicit ―status‖ value to the caller, who must inspect it after every call. The

status may be written into an extra, explicit parameter, stored in a global variable, or encoded

as otherwise invalid bit patterns of a function‘s regular return value.

3. Rely on the caller to pass a closure (in languages that support them) for an error-handling

routine that the normal routine can call when it runs into trouble. The first of these options is

fine in certain cases, but does not work in the general case. Options 2 and 3 tend to clutter up

the program, and impose overhead that we should like to avoid in the common case. The tests

in option 2 are particularly offensive: they obscure the normal flow of events in the common

case. Because they are so tedious and repetitive, they are also a common source of errors; one

can easily forget a needed test. Exception-handling mechanisms address these issues by

moving error-checking code ―out of line,‖ allowing the normal case to be specified simply,

and arranging for control to branch to a handler when appropriate. In many languages,

dynamic semantic errors automatically result in exceptions, which the program can then

catch. The programmer can also define additional, application-specific exceptions. Examples

of predefined exceptions include arithmetic overflow, division by zero, end-of-file on input,

subscript and subrange errors, and null pointer dereference. The rationale for defining these

as exceptions (rather than as fatal errors) is that they may arise in certain valid programs.

Some other dynamic errors (e.g., return from a subroutine that has not yet designated a return

value) are still fatal in most languages. In C++ and Common Lisp, exceptions are all

programmer defined. In PHP, the set_error_handler function can be used to turn built-in

semantic errors into ordinary exceptions. In Ada, some of the predefined exceptions can be

suppressed by means of a pragma. If a subroutine raises an exception but does not catch it

internally, it may ―return‖ in an unexpected way. This possibility is an important part of the

routine‘s interface to the rest of the program. Consequently, several languages, including Clu,

Modula-3, C++, and Java, include in each subroutine header a list of the exceptions that may

propagate out of the routine. This list is mandatory in Modula-3: it is a run-time error if an

exception arises that does not appear in the header, but is not caught internally. The list is

optional in C++: if it appears, the semantics are the same as in Modula-3; if it is omitted, all

exceptions are permitted to propagate. Java adopts an intermediate approach: it segregates its

exceptions into ―checked‖ and ―unchecked‖ categories. Checked exceptions must be declared

in subroutine headers; unchecked exceptions need not. Unchecked exceptions are typically

run-time errors that most programs will want to be fatal (e.g., subscript out of bounds)—and

that would therefore be a nuisance to declare in every function—but that a highly robust

program may want to catch if they occur in library routines.

 Exception Propagation

In most languages, a block of code can have a list of exception handlers. In C++:

try { // try to read from file

...

// potentially complicated sequence of operations

// involving many calls to stream I/O routines

...

CSE DEPARTMENT, NCERC PAMPADY Page 87

} catch(end_of_file) {

...

} catch(io_error e) {

// handler for any io_error other than end_of_file

...

} catch(...) {

// handler for any exception not previously named

// (in this case, the triple-dot ellipsis is a valid C++ token;

// it does not indicate missing code)

}

When an exception arises, the handlers are examined in order; control is transferred to the

first one that matches the exception. In C++, a handler matches if it names a class from

which the exception is derived, or if it is a catch-all (...). In the example here, let us assume

that end_of_file is a subclass of io_error. Then an end_of_file exception, if it arises, will be

handled by the first of the three catch clauses. All other I/O errors will be caught by the

second; all non-I/O errors will be caught by the third. If the last clause were missing, non-I/O

errors would continue to propagate up the dynamic chain. _ An exception that is declared in a

recursive subroutine will be caught by the innermost handler for that exception at run time. If

an exception propagates out of the scope inwhich it was declared, it can no longer be named

by a handler, and thus can be caught only by a ―catch-all‖ handler. In a language with

concurrency, one must consider what will happen if an exception is not handled at the

outermost level of a concurrent thread of control. InModula-3, the entire programterminates

abnormally; in Ada and Java, the affected thread terminates quietly; in C# the behavior is

implementation defined.

Handlers on Expressions

In an expression-oriented language such as ML or Common Lisp, an exception handler is

attached to an expression, rather than to a statement. Since execution of the handler replaces

the unfinished portion of the protected code when an exception occurs, a handler attached to

an expression must provide a value for the expression.

Implementation of Exceptions

The most obvious implementation for exceptions maintains a linked-list stack of handlers.

When control enters a protected block, the handler for that block is added to the head of the

list. When an exception arises, either implicitly or as a result of a raise statement, the

language run-time system pops the innermost handler off the list and calls it. The handler

begins by checking to see if it matches the exception that occurred; if not, it simply reraises

it:

if exception matches duplicate in set

. . .

else

reraise exception

To implement propagation back down the dynamic chain, each subroutine has an implicit

handler that performs the work of the subroutine epilogue code and then reraises the

exception. _

CSE DEPARTMENT, NCERC PAMPADY Page 88

If a protected block of code has handlers for several different exceptions, they

Multiple exceptions per

handler

are implemented as a single handler containing a multiarm if statement:

if exception matches end of file

. . .

elsif exception matches io error

. . .

else

. . . – – ―catch-all‖ handler _

The problem with this implementation is that it incurs run-time overhead in the common

case. Every protected block and every subroutine begins with code to push a handler onto the

handler list, and ends with code to pop it back off the list.We can usually do better.

The only real purpose of the handler list is to determine which handler is active. Since blocks

of source code tend to translate into contiguous blocks of machine language instructions, we

can capture the correspondence between handlers and protected blocks in the form of a table

generated at compile time. Each entry in the table contains two fields: the starting address of

a block of code and the address of the corresponding handler. The table is sorted on the first

field.When an exception occurs, the language run-time system performs binary search in the

table, using the program counter as key, to find the handler for the current block. If that

handler reraises the exception, the process repeats: handlers themselves are blocks of code,

and can be found in the table. The only subtlety arises in the case of the implicit handlers

associated with propagation out of subroutines: such a handler must ensure that the reraise

code uses the return address of the subroutine, rather than the current program counter, as the

key for table lookup.

Coroutines

Given an understanding of the layout of the run-time stack, we can now consider the

implementation of more general control abstractions coroutines in particular.

Like a continuation, a coroutine is represented by a closure (a code address and a referencing

environment), into which we can jump by means of a nonlocal goto, in this case a special

operation known as transfer. The principal difference between the two abstractions is that a

continuation is a constant it does not change once created while a coroutine changes every

time it runs. When we goto a continuation, our old program counter is lost, unless we

explicitly create a new continuation to hold it.When we transfer from one coroutine to

another, our old program counter is saved: the coroutine we are leaving is updated to reflect

it. Thus, if we performa goto into the same continuationmultiple times, each jump will start at

precisely the same location, but if we performa transfer into the same coroutine multiple

times, each jump will take up where the previous one left off.

Stack Allocation

Because they are concurrent (i.e., simultaneously started but not completed), coroutines

cannot share a single stack: their subroutine calls and returns, taken as a whole, do not occur

CSE DEPARTMENT, NCERC PAMPADY Page 89

in last-in-first-out order. If each coroutine is declared at the outermost level of lexical nesting

(as required in Modula-2), then their stacks are entirely disjoint: the only objects they share

are global, and thus statically allocated.

Most operating systems make it easy to allocate one stack, and to increase its portion of the

virtual address space as necessary during execution. It is usually not easy to allocate an

arbitrary number of such stacks; space for coroutines is something of an implementation

challenge.

The simplest solution is to give each coroutine a fixed amount of statically allocated stack

space.

This approach is adopted inModula-2, which requires the programmer

to specify the size and location of the stack when initializing a coroutine.

It is a run-time error for the coroutine to need additional space. Some Modula-2

implementations catch the overflow and halt with an error message; others display abnormal

behavior. If the coroutine uses less space than it is given, the excess is simply wasted.

If stack frames are allocated from the heap, as they are in most Lisp and Scheme

implementations, then the problems of overflow and internal fragmentation are avoided. At

the same time, the overhead of each subroutine call is significantly increased. An

intermediate option is to allocate the stack in large, fixed-size ―chunks.‖ At each call, the

subroutine calling sequence checks to see whether there is sufficient space in the current

chunk to hold the frame of the called routine.

CSE DEPARTMENT, NCERC PAMPADY Page 90

If not, another chunk is allocated and the frame is put there instead. At each subroutine

return, the epilogue code checks to see whether the current frame is the last one in its chunk.

If so, the chunk is returned to a ―free chunk‖ pool.

MODULE – 4

Functional and Logic Languages

 Functional and logic programming languages are also called declarative languages;

programs in these languages are said to describe (declaratively) what to do and not

(operationally) how to do it.

 This is in contrast to imperative languages which are based on models of the underlying

machine; programs written in imperative languages can be thus more directly compiled to

efficient machine code, but reasoning and program transformations are comparatively

difficult.

 Declarative programming languages have been developed since the 1970s, but their roots

can be traced to the 1930s when mathematicians and logicians began to study the theory

of computability.

 The functional programming community has focused on the concept of the

mathematical function as a value-mapping entity; since such a function is typically

defined by a set of equations, this yields a style of ―programming with recursive

equations‖.

 The task of the programmer is to construct a wanted result value from the given argument

values by some basic constructs with a simple mathematical interpretation;

 Functional languages have also considerably contributed to the theory of type systems by

concepts such as polymorphic functions (functions applicable to arguments of different

types) and functors (parameterized program modules that take modules as arguments and

return modules as results) which yielded the idea of generic programming.

 Logic programming is an outcome of research in automated theorem proving. In 1965,

Robinson published the resolution method as an efficient decision procedure for logic

formulas written in a subset of first-order predicate logic called Horn clause logic.

 While not every logic formula can be expressed in this language, it is sufficiently rich to

serve as the basis of a rule-based programming style where the task of the programmer is

to construct a relation between values: those given by the user are considered as input

from which the system computes the other ones as output.

 In the early 1970s, Kowalski elaborated the theory of logic programming with

Colmerauer producing the first implementation of the programming language Prolog

CSE DEPARTMENT, NCERC PAMPADY Page 91

(Programming in Logic). The resolution mechanism was extended by methods for

―constraint solving‖ which brought mathematics in closer contact to logic programming.

 In the 1990s, new developments have started to blur the distinction between functional

programming and logic programming leading to functional-logic programming: here a

logic formula also has a return value or, vice versa, a function call is also a goal which

has to be satisfied by functional programming and ―resolution‖ for logic programming

and thus enhances the expressiveness of the declarative style of programming.

 LISP has traditionally been popular for the manipulation of symbolic data, in the field of

Artificial Intelligence.

 Logic languages are widely used for formal specifications and theorem proving. Prolog

is the most common logic language.

1. Functional Programming

● Functional programming defines the outputs of a program as a mathematical function of

the inputs, with no notion of internal state, and thus no side effects.

● Miranda, Haskell, pH, Sisal, and Single Assignment C are purely functional.

● Functional languages provide a number of features that are often missing in imperative

languages, including:

o First-class function values and higher-order functions

o Extensive polymorphism

o List types and operators

o Structured function returns

o Constructors (aggregates) for structured objects

o Garbage collection

● a first-class value as one that can be passed as a parameter, returned from a subroutine, or

assigned into a variable.

● A higher order function takes a function as an argument, or returns a function as a result.

● Polymorphism is important in functional languages because it allows a function to be

used on as general a class of arguments as possible.

● Lists are important in functional languages because they have a natural recursive

definition.

Applications of Functional Languages

1. Knowledge representation

2. Machine learning

3. Natural language processing

4. Modeling of speech and vision

5. Scheme is used to teach introductory

2. Lambda calculus

CSE DEPARTMENT, NCERC PAMPADY Page 92

● Mathematically, a function is a single-valued mapping: it associates every element in one

set (the domain) with (at most) one element in another set (the range).

● In conventional notation, we indicate the domain and range of, say, the square root

function by writing

sqrt : R −→R

● We can also define functions using conventional set notation:

sqrt ≡ { (x, y) ∈ R×R | y > 0 ∧ x = y
2

}

● This notation is non constructive: it doesn‘t tell us how to compute square roots.

● Church designed the lambda calculus to address this limitation.

● So Lambda calculus is a framework developed by Alonzo Church in 1930s to study

computations with functions.

● Lambda calculus is a constructive notation for function definitions.

● Any computable function can be written as a lambda expression.

● Computation amounts to macro substitution of arguments into the function definition,

followed by reduction to simplest form via simple and mechanical rewrite rules.

● In Lambda calculus

o Function creation − Church introduced the notation λx.E to denote a function in

which ‗x‘ is a formal argument and ‗E‘ is the functional body. These functions

can be of without names and single arguments.

o Function application − Church used the notation E1.E2 to denote the application

of function E1 to actual argument E2. And all the functions are on single

argument.

Syntax of Lambda Calculus

● Lamdba calculus includes three different types of expressions, i.e.,

E :: = x(variables)

| E1 E2(function application)

| λx.E(function creation)

Where λx.E is called Lambda abstraction and E is known as λ-expressions.

Evaluating Lambda Calculus

● Pure lambda calculus has no built-in functions. Let us evaluate the following expression

−

(+ (* 5 6) (* 8 3))

CSE DEPARTMENT, NCERC PAMPADY Page 93

● Here, we can‘t start with '+' because it only operates on numbers. There are two

reducible expressions: (* 5 6) and (* 8 3).

● We can reduce either one first. For example −

(+ (* 5 6) (* 8 3))

(+ 30 (* 8 3))

(+ 30 24)

= 54

β-reduction Rule

● We need a reduction rule to handle λs

(λx . * 2 x) 4

(* 2 4)

= 8

This is called β-reduction.

3. Overview of Scheme

● Most Scheme implementations employ an interpreter that runs a ―read-eval-print‖ loop.

● The interpreter repeatedly reads an expression from standard input, evaluates that

expression, and prints the resulting value.

● If the user types

 (+ 3 4)

 the interpreter will print 7

● If the user types 7 the interpreter will also print 7

● most Scheme implementations provide a load function that reads (and evaluates) input

from a file:

(load "my_Scheme_program")

● Scheme (like Lisp) uses Cambridge Polish notation for expressions.

● Parentheses indicate a function application.

● The first expression inside the left parenthesis indicates the function; the remaining

expressions are its arguments.

● Suppose the user types

 ((+ 3 4))

When it sees the inner set of parentheses, the interpreter will call the function +,

passing 3 and 4 as arguments.

● Because of the outer set of parentheses, it will then attempt to call 7 as a zero-argument

function—a run-time error:

 eval: 7 is not a procedure

● Unlike all other programming languages, extra parentheses change the semantics of

Lisp/Scheme programs.

 (+ 3 4) evaluates to 7

CSE DEPARTMENT, NCERC PAMPADY Page 94

 ((+ 3 4)) evaluates to error

● One can prevent the Scheme interpreter from evaluating a parenthesized expression by

quoting it:

 (quote (+ 3 4)) evaluates to (+ 3 4)

● Here the result is a three-element list. Quoting is specified with a special shorthand

notation consisting of a leading single quote mark:

‘(+ 3 4) evaluates to (+ 3 4)

● User-defined functions can implement their own type checks using predefined type

predicate functions:

o (boolean? x) ; is x a Boolean?

o (char? x) ; is x a character?

o (string? x) ; is x a string?

o (symbol? x) ; is x a symbol?

o (number? x) ; is x a number?

o (pair? x) ; is x a pair?

o (list? x) ; is x a (proper) list?

● A symbol in Scheme is comparable to what other languages call an identifier.

● Identifiers are permitted to contain a wide variety of punctuation marks:

(symbol? ‘x$_%:&=*!) evaluates to #t

● The symbol #t represents the Boolean value true. False is represented by #f. Note the use

of quote (‘); the symbol begins with x.

● To create a function in Scheme one evaluates a lambda expression:

(lambda (x) (* x x)) is a function

 ((lambda (x) (* x x)) 3) =⇒ 9

● The first ―argument‖ to lambda is a list of formal parameters for the function (in this case

the single parameter x). The remaining ―arguments‖ constitute the body of the function.

● A lambda expression does not give its function a name; this can be done using let or

define.

● Function evaluation: When a function is called, the language implementation restores the

referencing environment that was in effect when the lambda expression was evaluated.

● It then augments this environment with bindings for the formal parameters and evaluates

the expressions of the function body in order.

● The value of the last such expression becomes the value returned by the function:

((lambda (x) (* x x)) 3) =⇒ 9

● Example

(define min (lambda (a b) (if (< a b) a b)))

The expression (min 123 456) will evaluate to 123;

CSE DEPARTMENT, NCERC PAMPADY Page 95

● Simple conditional expressions can be written using if:

 (if (< 2 3) 4 5) =⇒ 4

● The implementation of if checks to see whether the first argument evaluates to #t.

● If so, it returns the value of the second argument , without evaluating the third argument.

● Otherwise it returns the value of the third argument, without evaluating the second.

Bindings

● Names can be bound to values by introducing a nested scope:

(let ((a 3)

 (b 4)

 (square (lambda (x) (* x x)))

 (plus +))

 (sqrt (plus (square a) (square b)))) =⇒ 5.0

● The special form let takes two or more arguments.

● The first of these is a list of pairs. In each pair, the first element is a name and the second

is the value that the name is to represent within the remaining arguments to let.

● Remaining arguments are then evaluated in order; the value of the construct as a whole is

the value of the final argument.

Lists and Numbers

● Like all Lisp dialects, Scheme provides functions to manipulate lists.

● The three most important are

o car, which returns the head of a list,

 (car ‘(2 3 4)) =⇒ 2

o cdr, which returns the rest of the list (everything after the head),

 (cdr ‘(2 3 4)) =⇒ (3 4)

o cons, which joins a head to the rest of a list.

 (cons 2 ‘(3 4)) =⇒ (2 3 4)

Equality Testing and Searching

● Scheme provides several different equality-testing functions.

● For numerical comparisons, = performs type conversions where necessary (e.g., to

compare an integer and a floating-point number).

● For general-purpose use,

• eqv? performs a shallow comparison, while

• equal? performs a deep (recursive) comparison.

● The eq? function also performs a shallow comparison, and may be cheaper than eqv? in

certain circumstances

● To search for elements in lists, Scheme provides two sets of functions, each of which has

variants corresponding to the three general-purpose equality predicates.

● The functions memq, memv, and member take an element and a list as argument, and

return the longest suffix of the list beginning with the element:

CSE DEPARTMENT, NCERC PAMPADY Page 96

(memq ’z ’(x y z w)) =⇒ (z w)

(memv ’(z) ’(x y (z) w)) =⇒ #f ; (eq? ’(z) ’(z)) =⇒ #f

(member ’(z) ’(x y (z) w)) =⇒ ((z) w) ; (equal? ’(z) ’(z)) =⇒ #t
● The memq, memv, and member functions perform their comparisons using eq?, eqv?, and

equal?, respectively.

● They return #f if the desired element is not found.

Control Flow and Assignment

● if. . . elsif. . . else is represented with cond

 (cond

 ((< 3 2) 1)

 ((< 4 3) 2)

 (else 3)) =⇒ 3

● The arguments to cond are pairs.

● The value of the overall expression is the value of the second element of the first pair in

which the first element evaluates to #t.

● If none of the first elements evaluates to #t, then the overall value is #f.

● The symbol else is permitted only as the first element of the last pair of the construct.

Assignment

● Assignment employs the special form set! and the functions set-car! and set-cdr!:

(let ((x 2) ; initialize x to 2

 (l ‘(a b))) ; initialize l to (a b)

 (set! x 3) ; assign x the value 3

 (set-car! l ‘(c d)) ; assign head of l the value (c d)

 (set-cdr! l ‘(e)) ; assign rest of l the value (e)

 ... x =⇒ 3

 ... l =⇒ ((c d) e)

● The return values of the various varieties of set! are implementation dependent.

Sequencing

● Sequencing uses the special form begin:

(begin

 (display "hello ")

 (display ―world"))

Iteration

● Iteration uses the special form do and the function for-each:

(define iter-fib (lambda (n)

 (do ((i 0 (+ i 1))

CSE DEPARTMENT, NCERC PAMPADY Page 97

 (a 0 b)

 (b 1 (+ a b)))

 ((= i n) b)

 (display b) ; body of loop

 (display " ")))) ; body of loop

o (do ((i 0 (+ i 1)) : The first argument to do is a list of triples, each of which specifies a

new variable, an initial value for that variable, and an expression to be evaluated and

placed in a fresh instance of the variable at the end of each iteration.

o (a 0 b) : The second argument to do is a pair that specifies the termination condition

and the expression to be returned.

● The function for-each takes as argument a function and a sequence of lists.

● There must be as many lists as the function takes arguments, and the lists must all be of

the same length.

● For-each calls its function argument repeatedly, passing successive sets of arguments

from the lists.

(for-each (lambda (a b) (display (* a b)) (newline))

‘(2 4 6)

‘(3 5 7))

Programs as Lists

● A program in Scheme takes the form of a list. ie., Lisp and Scheme are homoiconic—

self-representing.

● A parenthesized string of symbols (in which parentheses are balanced) is called an S-

expression regardless of whether we think of it as a program or as a list.

● An unevaluated program is a list, and can be constructed, deconstructed, and manipulated

with all the usual list functions.

Evaluating data as code:

● Scheme provides an eval function that can be used to evaluate a list that has been created

as a data structure:

(define compose

 (lambda (f g)

 (lambda (x) (f (g x)))))

 ((compose car cdr) ‘(1 2 3)) =⇒ 2

● Compose takes as arguments a pair of functions f and g.

● It returns as result a function that takes as parameter a value x, applies g to it, then

applies f, and finally returns the result.

Eval and Apply

● The functions eval and apply can be defined as mutually recursive.

CSE DEPARTMENT, NCERC PAMPADY Page 98

● When passed a number or a string, eval simply returns that number or string.

● When passed a symbol, it looks that symbol up in the specified environment and returns

the value to which it is bound.

● When passed a list it checks to see whether the first element of the list is one of a small

number of symbols that name so-called primitive special forms, built into the language

implementation.

● When passed a function f and a list of arguments l, apply inspects the internal

representation of f to see whether it is primitive.

● If so it invokes the built-in implementation.

● Otherwise it retrieves (from the representation of f) the referencing environment in

which f ‘s lambda expression was originally evaluated. To this environment it adds the

names of f ‘s parameters, with values taken from l.

● Call this resulting environment e.

● Next apply retrieves the list of expressions that make up the body of f .

● It passes these expressions, together with e, one at a time to eval.

● Finally, apply returns what the eval of the last expression in the body of f returned.

● One can choose to evaluate function arguments before passing them to a function, or to

pass them unevaluated.

● The former option is called applicative-order evaluation; the latter is called normal-order

evaluation.

● Scheme uses applicative order in most cases.

4. Strictness and Lazy Evaluation

● Evaluation order can have an effect not only on execution speed, but on program

correctness as well.

● A function is said to be strict if it is undefined (fails to terminate, or encounters an error)

when any of its arguments is undefined. Such a function can safely evaluate all its

arguments, so its result will not depend on evaluation order.

● A language is said to be strict if it is defined in such a way that functions are always

strict.

● If a language always evaluates expressions in applicative order, then every function is

guaranteed to be strict, because whenever an argument is undefined, its evaluation will

fail and so will the function to which it is being passed.

● ML and Scheme are strict.

● A function is said to be nonstrict if it does not impose this requirement-that is, if it is

sometimes defined even when one of its arguments is not.
● A language is said to be nonstrict if it permits the definition of nonstrict functions.

● A nonstrict language cannot use applicative order; it must use normal order to avoid

evaluating unneeded arguments.

● Miranda and Haskell are nonstrict.

● Lazy evaluation gives us the advantage of normal-order evaluation (not evaluating un

needed sub expressions)

● Lazy evaluation does not evaluate an expression until its value is actually needed.

CSE DEPARTMENT, NCERC PAMPADY Page 99

● Every argument is tagged internally with a ―memo‖ that indicates its value, if known.

Any attempt to evaluate the argument sets the value in the memo as a side effect, or

returns the value (without recalculating it) if it is already set.

● Lazy evaluation is particularly useful for ―infinite‖ data structures.

● Lazy evaluation is used for all arguments in Miranda and Haskell.

● Normal-order evaluation can be thought of as function evaluation using call-by-name

parameters, lazy evaluation is sometimes said to employ ―call-by-need.‖

● In addition to Miranda and Haskell, call-by-need can be found in the R scripting

language, widely used by statisticians.

● The principal problem with lazy evaluation is its behavior in the presence of side effects.

● If an argument contains a reference to a variable that may be modified by an assignment,

then the value of the argument will depend on whether it is evaluated before or after the

assignment.

5. I/O: Streams and Monads

Streams

● One way to avoid I/O side effects is to model input and output as streams- unbounded-

length lists whose elements are generated lazily.

● If we model input and output as streams, then a program takes the form

 (define output (my_prog input))

● When it needs an input value, function my_prog forces evaluation of the car of input, and

passes the cdr on to the rest of the program.

● To drive execution, the language implementation repeatedly forces evaluation of the car

of output, prints it, and repeats:

(define driver (lambda (s)

 (if (null? s) ‘() ; nothing left

 (display (car s))

 (driver (cdr s)))))

(driver output)

● Streams formed the basis of the I/O system in early versions of Haskell.

● Streams don‘t work very well for graphics or random access to files.

● They also make it difficult to accommodate I/O of different kinds

Monads

● Recent versions of Haskell employ a general concept known as monads.

● Monads are drawn from a branch of mathematics known as category theory.

● In Haskell, monads are essentially a clever use of higher-order functions, coupled with a

bit of syntactic sugar, that allow the programmer to chain together a sequence of actions

(function calls) that have to happen in order.

CSE DEPARTMENT, NCERC PAMPADY Page 100

● The power of the idea comes from the ability to carry a hidden, structured value of

arbitrary complexity from one action to the next.

● Monads provide a more general solution to the problem of threading mutable state

through a functional program

● The IO monad serves as the central repository for imperative language features-not only

I/O and random numbers, but also mutable global variables and shared-memory

synchronization.

● Additional monads (with accessible hidden state) support partial functions and various

container classes (lists and sets).

● When coupled with lazy evaluation, monadic containers in turn provide a natural

foundation for backtracking search, nondeterminism, and the functional equivalent of

iterators.

6. Higher-Order Functions

● A function is said to be a higher-order function (also called a functional form) if it takes a

function as an argument, or returns a function as a result.

● Map function in Scheme: The Scheme version of map takes as argument a function and

a sequence of lists. There must be as many lists as the function takes arguments, and the

lists must all be of the same length.

● Map calls its function argument on corresponding sets of elements from the lists:

 (map * ‘(2 4 6) ‘(3 5 7)) =⇒ (6 20 42)

● Folding (reduction) in Scheme: Programmers in Scheme (or in ML, Haskell, or other

functional languages) can easily define other higher-order functions.

● If we want to be able to ―fold‖ the elements of a list together, using an associative binary

operator:

(define fold (lambda (f i l)

 (if (null? l) i ; i is commonly the identity element for f

 (f (car l) (fold f i (cdr l))))))

● Now (fold + 0 ‘(1 2 3 4 5)) gives us the sum of the first five natural numbers, and (fold *

1 ‘(1 2 3 4 5)) gives us their product.

● One of the most common uses of higher-order functions is to build new functions from

existing ones

(define total (lambda (l) (fold + 0 l)))

(total ‘(1 2 3 4 5)) =⇒ 15

(define total-all (lambda (l)

 (map total l)))

(total-all ‘((1 2 3 4 5)

 (2 4 6 8 10)

 (3 6 9 12 15))) =⇒ (15 30 45)

CSE DEPARTMENT, NCERC PAMPADY Page 101

Currying

● A common operation, named Curry, is to replace a multi argument function with a

function that takes a single argument and returns a function that expects the remaining

arguments:

(define curried-plus (lambda (a) (lambda (b) (+ a b))))

((curried-plus 3) 4) =⇒ 7

(define plus-3 (curried-plus 3))

(plus-3 4) =⇒ 7

● Among other things, currying gives us the ability to pass a ―partially applied‖ function to

a higher-order function.

7. Logic Programming

● Logic programming systems allow the programmer to state a collection of axioms from

which theorems can be proven.

● The user of a logic program states a theorem, or goal, and the language implementation

attempts to find a collection of axioms and inference steps (including choices of values

for variables) that together imply the goal.

● Of the several existing logic languages, Prolog is by far the most widely used.

● In almost all logic languages, axioms are written in a standard form known as a Horn

clause.

● A Horn clause consists of a head, or consequent term H, and a body consisting of

terms Bi :

H ← B1, B2, . . . , Bn

● The semantics of this statement are that when the Bi are all true, we can deduce that H is

true as well.

● When reading aloud, we say ―H, if B1, B2, . . . , and Bn.‖

● Horn clauses can be used to capture most, but not all, logical statements.

● In order to derive new statements, a logic programming system combines existing

statements, canceling like terms, through a process known as resolution.

● If we know that A and B imply C, for example, and that C implies D, we can deduce that

A and B imply D:

C ← A, B

D ← C

D ← A, B

● During resolution, free variables may acquire values through unification with

expressions in matching terms

Advantages and Limitations of Logic programming

Advantages

CSE DEPARTMENT, NCERC PAMPADY Page 102

1. It can be used to express knowledge in a way that does not depend on the

implementation, making programs more flexible, compressed and understandable

2. It enables knowledge to be separated from use, ie., the machine architecture can be

changed without changing programs or their underlying code

3. It can be altered and extended in natural ways to support special forms of knowledge,

such as meta-level or higher order knowledge

4. It can be used in non-computational disciplines relying on reasoning and precise means

of expression

Limitations

1. Due to insufficient investment in complementary technologies users were poorly served

2. In the beginning, poor facilities for supporting arithmetic, types, etc. had a discouraging

effect on the programming community.

3. There is no adequate way of representing computational concepts found in built-in

mechanisms of state variables

4. Some programmers always have, and always will prefer operational nature of machine

operated programs

8. Prolog logic programming

● Scheme interpreter evaluates functions in the context of a referencing environment in

which other functions and constants have been defined

● Prolog interpreter runs in the context of a database of clauses (Horn clauses) that are

assumed to be true.

● Each clause is composed of terms, which may be constants, variables, or structures.

● A constant is either an atom or a number. A structure can be thought of as either a logical

predicate or a data structure.

● Atoms in Prolog are similar to symbols in Lisp. Lexically, an atom looks like an

identifier beginning with a lowercase letter, a sequence of ―punctuation‖ characters, or a

quoted character string:

foo my_Const + ‘Hi, Mom‘

● Numbers resemble the integers and floating-point constants of other programming

languages.

● A variable looks like an identifier beginning with an uppercase letter:

Foo My_var X

● Variables can be instantiated to arbitrary values at run time as a result of unification.

● The scope of every variable is limited to the clause in which it appears.

● There are no declarations. As in Lisp, type checking occurs only when a program

attempts to use a value in a particular way at run time.

● Structures consist of an atom called the functor and a list of arguments:

rainy(rochester)

CSE DEPARTMENT, NCERC PAMPADY Page 103

teaches(scott, cs254)

bin_tree(foo, bin_tree(bar, glarch))

● Prolog requires the opening parenthesis to come immediately after the functor, with no

intervening space. Arguments can be arbitrary terms: constants, variables, or (nested)

structures.

● Internally, a Prolog implementation can represent a structure using Lisp-like cons cells.

● The clauses in a Prolog database can be classified as facts or rules, each of which ends

with a period.

● A fact is a Horn clause without a right-hand side.

rainy(rochester).

● A rule has a right-hand side:

snowy(X) :- rainy(X), cold(X).

The token :- is the implication symbol; the comma indicates ―and.‖Variables that appear in the

head of a Horn clause are universally quantified: for all X, X is snowy if X is rainy and X

is cold. _

● It is also possible to write a clause with an empty left-hand side. Such a clause is called a

query, or a goal. Queries do not appear in Prolog programs.

● Rather, one builds a database of facts and rules and then initiates execution by giving the

Prolog interpreter a query to be answered.

● In most implementations of Prolog, queries are entered with a special ?- implication

symbol.

● If we were to type the following:

rainy(seattle).

rainy(rochester).

?- rainy(C).

the Prolog interpreter would respond with

C = seattle

● Of course, C = rochester would also be a valid answer, but Prolog will find seattle first,

because it comes first in the database.

● If we want to find all possible solutions, we can ask the interpreter to continue by typing

a semicolon:

C = seattle ;

C = rochester

● If we type another semicolon, the interpreter will indicate that no further solutions are

possible:

C = seattle ;

C = rochester ;

No

Resolution and Unification

CSE DEPARTMENT, NCERC PAMPADY Page 104

● The resolution principle, says that if C1 and C2 are Horn clauses and the head of C1

matches one of the terms in the body of C2, then we can replace the term in C2 with the

body of C1. Consider the following example:

takes(jane_doe, his201).

takes(jane_doe, cs254).

takes(ajit_chandra, art302).

takes(ajit_chandra, cs254).

classmates(X, Y) :- takes(X, Z), takes(Y, Z).

● If we let X be jane_doe and Z be cs254, we can replace the first term on the right-hand

side of the last clause with the (empty) body of the second clause, yielding the new rule

classmates(jane_doe, Y) :- takes(Y, cs254).

● In other words, Y is a classmate of jane_doe if Y takes cs254.

● Note that the last rule has a variable (Z) on the right-hand side that does not appear in the

head. Such variables are existentially quantified: for all X and Y, X and Y are classmates

if there exists a class Z that they both take.

● The pattern-matching process used to associate X with jane_doe and Z with cs254 is

known as unification.

● Variables that are given values as a result of unification are said to be instantiated.

● The unification rules for Prolog state that

o A constant unifies only with itself.

o Two structures unify if and only if they have the same functor and the same arity,

and the corresponding arguments unify recursively.

o A variable unifies with anything. If the other thing has a value, then the variable is

instantiated.

● If the other thing is an un instantiated variable, then the two variables are associated in

such a way that if either is given a value later, that value will be shared by both.

● Unification of structures in Prolog is very much akin to ML‘s unification of the types of

formal and actual parameters.

● Equality in Prolog is defined in terms of ―unifiability.‖

● The goal =(A, B) succeeds if and only if A and B can be unified.

Lists

● Like equality checking, list manipulation is a sufficiently common operation in Prolog to

warrant its own notation.

● The construct [a, b, c] is syntactic sugar for the structure .(a, .(b, .(c, []))), where [] is the

empty list and . is a built-in cons-like predicate.

● Prolog adds an extra convenience, however: an optional vertical bar that delimits the

―tail‖ of the list.

● Using this notation, [a, b, c] could be expressed as [a | [b, c]], [a, b | [c]], or [a, b, c | []].

● One of the interesting things about Prolog resolution is that it does not in general

distinguish between ―input‖ and ―output‖ arguments

CSE DEPARTMENT, NCERC PAMPADY Page 105

● Thus, given

append([], A, A).

append([H | T], A, [H | L]) :- append(T, A, L).

we can type

?- append([a, b, c], [d, e], L).

L = [a, b, c, d, e]

?- append(X, [d, e], [a, b, c, d, e]).

X = [a, b, c]

?- append([a, b, c], Y, [a, b, c, d, e]).

Y = [d, e]

● This example highlights the difference between functions and Prolog predicates.

● The former have a clear notion of inputs (arguments) and outputs (results); the latter do

not.

Arithmetic

● The usual arithmetic operators are available in Prolog, but they play the role of

predicates, not of functions.

● Thus +(2, 3), which may also be written 2 + 3, is a two-argument structure, not a function

call. In particular, it will not unify with 5:

?- (2 + 3) = 5.

No

● To handle arithmetic, Prolog provides a built-in predicate, is, that unifies its first

argument with the arithmetic value of its second argument:

?- is(X, 1+2).

X = 3

?- X is 1+2.

X = 3 % infix is also ok

?- 1+2 is 4-1.

No % first argument (1+2) is already instantiated

?- X is Y.

ERROR % second argument (Y) must already be instantiated

?- Y is 1+2, X is Y.

Y = 3

X = 3 % Y is instantiated by the time it is needed

Search/Execution Order

● In the realm of formal logic, one can imagine two principal search strategies:

o Start with existing clauses and work forward, attempting to derive the goal. This

strategy is known as forward chaining.

CSE DEPARTMENT, NCERC PAMPADY Page 106

o Start with the goal and work backward, attempting to ―unresolve‖ it into a set of

preexisting clauses. This strategy is known as backward chaining.

● If the number of existing rules is very large, but the number of facts is small, it is possible

for forward chaining to discover a solution more quickly than backward chaining.

● In most circumstances, however, backward chaining turns out to be more efficient.

● Prolog is defined to use backward chaining. Because resolution is associative and

commutative, a backward chaining theorem prover can limit its search to sequences of

resolutions in which terms on the right-hand side of a clause are unified with the heads of

other clauses one by one in some particular order (e.g., left to right).

● The resulting search can be described in terms of a tree of subgoals.

● The Prolog interpreter (or program) explores this tree depth first, from left to right.

● It starts at the beginning of the database, searching for a rule R whose head can be unified

with the top-level goal.

● It then considers the terms in the body of R as subgoals, and attempts to satisfy them,

recursively, left to right.

● If at any point a subgoal fails, the interpreter returns to the previous subgoal and attempts

to satisfy it in a different way

● The process of returning to previous goals is known as backtracking.

● It strongly resembles the control flow of generators in Icon

● Whenever a unification operation is ―undone‖ in order to pursue a different path through

the search tree, variables that were given values or associated with one another as

rainy(seattle).

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X), cold(X).

 Figure: Backtracking search in Prolog

CSE DEPARTMENT, NCERC PAMPADY Page 107

● a result of that unification are returned to their uninstantiated or unassociated state

● Space management for backtracking search in Prolog usually follows the single stack

implementation of iterators.

● The interpreter pushes a frame onto its stack every time it begins to pursue a new subgoal

G.

● If G fails, the frame is popped from the stack and the interpreter begins to backtrack.

● If G succeeds, control returns to the ―caller‖, but G‘s frame remains on the stack.

● At the top level of the interpreter, a semicolon typed by the user is treated the same as

failure of the most recently satisfied subgoal.

● The results of a Prolog program are deterministic and predictable.

● Suppose for example that we have a database describing a directed acyclic graph:

edge(a, b). edge(b, c). edge(c, d).

edge(d, e). edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :- edge(Z, Y), path(X, Z).

● The last two clauses tell us how to determine whether there is a path from node X to node

Y.

● If we were to reverse the order of the terms on the right-hand side of the final clause, then

the Prolog interpreter would search for a node Z that is reachable from X before checking

to see whether there is an edge from Z to Y.

MODULE – 5

Object-Oriented Programming

With the development of complicated computer applications, data

abstraction has become essential to software engineering. The abstraction provided by modules

and module types has at least three important benefits:

1. It reduces conceptual load by minimizing the amount of detail that the programmer

must think about at one time.

2. It provides fault containment by preventing the programmer from using a

program component in inappropriate ways, and by limiting the portion of a program‘s text in

which a given component can be used, thereby limiting the portion that must be considered when

searching for the cause of a bug.

3. It provides a significant degree of independence among program components,

making it easier to assign their construction to separate individuals, to modify their internal

implementations without changing external code that uses them, or to install them in a library

where they can be used by other programs.

ENCAPSULATION AND INHERITANCE

CSE DEPARTMENT, NCERC PAMPADY Page 108

Encapsulation mechanisms enable the programmer to group data and the subroutines that operate

on them together in one place, and to hide irrelevant details

from the users of an abstraction.

i) Modules

Scope rules for data hiding were one of the principal innovations of Clu, Modula, Euclid, and

other module-based languages of the 1970s. In Clu and Euclid, the declaration and definition

(header and body) of a module always appear together.

The header clearly states which of the module‘s names are to be exported.

If a Euclid module M exports a type T, by default the remainder of the program can

do nothing with objects of type T other than pass them to subroutines exported from M. T is said

to be an opaque type.

In Modula-2, programmers have the option of separating the header and body of a module.

In―internal‖ modules, the two parts appear together. In an ―external‖ module

(meant for separate compilation), the header appears in one source file and the

body in another. Unfortunately, there is no way to divide the header into public and private parts;

everything in it is public (i.e., exported). The only concession to data hiding is that a type may be

made opaque by listing only its name in the header:

TYPE T;

In this case variables of type T can only be assigned, compared for equality, and passed to the

module‘s subroutines.

Ada, which also allows the headers and bodies of modules (called packages) to be separated,

eliminates the problems of Modula-2 by allowing the header of a package to be divided into

public and private parts. A type can be exported opaquely by putting its definition in the private

part of the header and simply naming it in the public part:

package foo is -- header

...

type T is private;

...

private -- definitions below here are inaccessible to users

...

type T is ... -- full definition

...

end foo;

When the header and body of a module appear in separate files, a change to a module body never

requires us to recompile any of the module‘s users. A change to the private part of a module

header may require us to recompile the module‘s users, but never requires us to change their

CSE DEPARTMENT, NCERC PAMPADY Page 109

code. A change to the public part of a header is a change to the module‘s interface: it will often

require us to change the code of users.

Because they affect only the visibility of names, static, manager-style modules introduce no

special code generation issues. Storage for variables and other data

inside a module is managed in precisely the same way as storage for data immediately

outside the module. If the module appears in a global scope, then its data can be allocated

statically. If the module appears within a subroutine, then its data can be allocated on the stack,

at known offsets, when the subroutine is called, and reclaimed when it returns.

Module types, as in Euclid, are somewhat more complicated: they allow a module to have an

arbitrary number of instances. The obvious implementation then resembles that of a record. If all

of the data in the module have a statically known size, then each individual datum can be

assigned a static offset within the module‘s storage. If the size of some of the data is not known

until run time, then the module‘s storage can be divided into fixed-size and variable-size

portions, with a dope vector (descriptor) at the beginning of the fixed-size portion. Instances of

the module can be allocated statically, on the stack, or in the heap, as appropriate.

ii) The ―this‖ Parameter

One additional complication arises for subroutines inside a module.

We could, of course, replicate the code for each subroutine

in each instance of the module, just as we replicate the data. This replication

would be highly wasteful, however, as the copies would vary only in the details

of address computations. A better technique is to create a single instance of each

module subroutine, and to pass that instance, at run time, the address of the storage

of the appropriate module instance. This address takes the form of an extra, hidden first

parameter for every module subroutine. A Euclid call of the form

my_stack.push(x)

is translated as if it were really

push(my_stack, x)

where my_stack is passed by reference. The same translation occurs in object oriented

languages.

iii) Classes
The basic philosophy behind the visibility rules of C++ can be summarized as

follows:

 Any class can limit the visibility of its members. Public members are visible anywhere

the class declaration is in scope. Private members are visible only inside the class‘s

methods. Protected members are visible inside methods of the class or its descendants.

 A derived class can restrict the visibility of members of a base class, but can never

increase it. Private members of a base class are never visible in a derived class. Protected

and public members of a public base class are protected or public, respectively, in a

CSE DEPARTMENT, NCERC PAMPADY Page 110

derived class. Protected and public members of a protected base class are protected

members of a derived class. Protected and public members of a private base class are

private members of a derived class.

 A derived class that limits the visibility of members of a base class by declaring that base

class protected or private can restore the visibility of individual members of the base class

by inserting a using declaration in the protected or public portion of the derived class

declaration.

Other object-oriented languages take different approaches to visibility. Eiffel is more flexible

than C++ in the patterns of visibility it can support, but it does not adhere to the first of the C++

principles above. Derived classes in Eiffel can both restrict and increase the visibility of

members of base classes.

Every method (called a feature in Eiffel) can specify its own export status. If the status is

{NONE} then the member is effectively private (called secret in Eiffel). If the status is {ANY}

then the member is effectively public (called generally available in Eiffel).

In the general case the status can be an arbitrary list of class names, in which case the feature is

said to be selectively available to those classes and their descendants only. Any feature inherited

from a base class can be given a new status in a derived class. Java and C# follow C++in the

declaration of public, protected, and private members, but do not provide the protected and

private designations for base classes; a derived class can neither increase nor restrict the

visibility of members of a base class. The protected keyword has a slightly different meaning in

Java than it does in C++: a protected member of a Java class is visible not only within derived

classes, but also within the entire package (namespace) in which the class is declared.

iv) Extending without Inheritance

The desire to extend the functionality to an existing abstraction is one of the principal

motivations for object-oriented programming. Inheritance is the standard mechanism that makes

such extension possible. There are times, however, when inheritance is not an option,

particularly when dealing with pre-existing code. The class one wants to extend may not permit

inheritance, for instance: in Java, it may be labeled final; in C#, it may be sealed. Even if

inheritance is possible in principle, there may be a large body of existing code that uses the

original class name, and it may not be feasible to go back and change all the variable and

parameter declarations to use a new derived type.

For situations like these, C# 3.0 provides extension methods, which give the appearance of

extending an existing class:

static class AddToString {

public static int toInt(this string s) {

CSE DEPARTMENT, NCERC PAMPADY Page 111

return int.Parse(s);

}

}

An extension method must be static, and must be declared in a static class.

Its first parameter must be prefixed with the keyword this. The method can then be invoked as if

it were a member of the class of which this is an instance:

int n = myString.toInt();

INITIALIZATION AND FINALIZATION

Most object-oriented languages provide some sort of special mechanism to initialize an object

automatically at the beginning of its lifetime. When written in the form of a subroutine, this

mechanism is known as a constructor. Though the name might be thought to imply otherwise, a

a constructor does not allocate space; it initializes space that has

already been allocated. A few languages provide a similar destructor mechanism to finalize an

object automatically at the end of its lifetime.

 Several important issues arise:

i) Choosing a constructor: An object-oriented language may permit a class to have zero, one, or

many distinct constructors. In the latter case, different constructors may have different names, or

it may be necessary to distinguish among them by number and types of arguments.

ii) References and values: If variables are references, then every object must be created

explicitly, and it is easy to ensure that an appropriate constructor is called. If variables are values,

then object creation can happen implicitly as a result of elaboration. In this latter case, the

language must either permit objects to begin their lifetime uninitialized, or it must provide a way

to choose an appropriate constructor for every elaborated object.

iii) Execution order: When an object of a derived class is created in C++, the compiler

guarantees that the constructors for any base classes will be executed, outermost first, before the

constructor for the derived class. Moreover, if a class has members that are themselves objects of

some class, then the constructors for the members will be called before the constructor for the

object in which they are contained. These rules are a source of considerable syntactic and

semantic complexity: when combined with multiple constructors, elaborated objects, and

multiple inheritance, they can sometimes induce a complicated sequence of nested constructor

invocations, with overload resolution, before control even enters a given scope. Other languages

have simpler rules.

CSE DEPARTMENT, NCERC PAMPADY Page 112

iv) Garbage collection: Most object-oriented languages provide some sort of constructor

mechanism. Destructors are comparatively rare. Their principal purpose is to facilitate manual

storage reclamation in languages like C++. If the language implementation collects garbage

automatically, then the need for destructors is greatly reduced.

4 ISSUES IN DETAIL

i) Choosing a Constructor

Smalltalk, Eiffel, C++, Java, and C# all allow the programmer to specify more than one

constructor for a given class. In C++, Java, and C#, the constructors behave like overloaded

subroutines: they must be distinguished by their numbers and types of arguments. In Smalltalk

and Eiffel, different constructors can have different names; code that creates an objectmust name

a constructor explicitly. In Eiffel one might say

class COMPLEX

creation

new_cartesian, new_polar

feature {ANY}

x, y : REAL

new_cartesian(x_val, y_val : REAL) is

do

x := x_val; y := y_val

end

new_polar(rho, theta : REAL) is

do

x := rho * cos(theta)

y := rho * sin(theta)

end

-- other public methods

feature {NONE}

-- private methods

end -- class COMPLEX

...

a, b : COMPLEX

...

!!b.new_cartesian(0, 1)

!!a.new_polar(pi/2, 1)

The !! operator is Eiffel‘s equivalent of new. Because class COMPLEX specified constructor

(―creator‖) methods, the compiler will insist that every use of !! specify a constructor name and

arguments.

CSE DEPARTMENT, NCERC PAMPADY Page 113

There is no straightforward analog of this code in C++; the fact that both constructors take two

real arguments means that they could not be distinguished by overloading.

Smalltalk resembles Eiffel in the use of multiple named constructors, but it distinguishes more

sharply between operations that pertain to an individual object and operations that pertain to a

class of objects.

Smalltalk also adopts an anthropomorphic programming model in which every operation is seen

as being executed by some specific object in response to a request (a ―message‖) from some

other object.

Consider, for example, the standard class named Date. Corresponding to Date is a single object

(call it D) that performs operations on behalf of the class. In particular, it is D that creates new

objects of class Date. Because only objects execute operations (classes don‘t), we don‘t really

need a name for D; we can simply use the name of the class it represents:

todaysDate <- Date today

This code causes D to execute the today constructor of class Date, and assigns a reference to the

newly created object into a variable named todays Date. So what is the class of D ? It clearly

isn‘t Date, because D represents class Date.

Smalltalk says that D is an object (in fact the only object) of the metaclass Date class.

For technical reasons, it is also necessary for Date class to be represented by an object. To avoid

an infinite regression, all objects that represent metaclasses are instances of a single class named

Metaclass.

ii) References and Values

Several object-oriented languages, including Simula, Smalltalk, Python, Ruby, and Java, use a

programming model in which variables refer to objects.

Other languages, including C++, Modula-3, Ada 95, and Oberon, allow a variable to have a

value that is an object.

Eiffel uses a reference model by default, but allows the programmer to specify that certain

classes should be expanded, in which case variables of those classes will use a value model.

In a similar vein, C# uses struct to define types whose variables are values, and class to define

types whose variables are references.

With a reference model for variables every

object is created explicitly, and it is easy to

CSE DEPARTMENT, NCERC PAMPADY Page 114

ensure that an appropriate constructor is called.

With a value model for variables object creation

can happen implicitly as a result of elaboration.

If a C++ variable of class type foo is declared with no initial value, then the compiler will call

foo‘s zero-argument constructor (if no such constructor exists, but other constructors do, then the

declaration is a static semantic error—a call to a nonexistent subroutine):

foo b; // calls foo::foo()

If the programmer wants to call a different constructor, the declaration must specify constructor

arguments to drive overload resolution:

foo b(10, ‘x‘); // calls foo::foo(int, char)

The most common argument list consists of a single object, of the same or different class:

 foo a;

 bar b;

 ...

 foo c(a); // calls foo::foo(foo&)

 foo d(b); // calls foo::foo(bar&)

Usually the programmer‘s intent is to declare a new object whose initial value is―the same‖ as

that of the existing object. In this case it is more natural to write

foo a; // calls foo::foo()

bar b; // calls bar::bar()

...

foo c = a; // calls foo::foo(foo&)

foo d = b; // calls foo::foo(bar&)

In recognition of this intent, a single-argument constructor in C++ is called a copy constructor. It

is important to realize here that the equals sign (=) in these declarations indicates initialization,

not assignment.

The effect is not the same as that of the similar code fragment

foo a, c, d; // calls foo::foo() three times

bar b; // calls bar::bar()

...

c = a; // calls foo::operator=(foo&)

d = b; // calls foo::operator=(bar&)

CSE DEPARTMENT, NCERC PAMPADY Page 115

Here c and d are initialized with the zero-argument constructor, and the later use of the equals

sign indicates assignment, not initialization. The distinction is a common source of confusion in

C++ programs. It arises from the combination of a value model of variables and an insistence

that every elaborated object be initialized by a constructor.

iii) Execution Order

As we have seen, C++ insists that every object be initialized before it can be used.

Moreover, if the object‘s class (call it B) is derived from some other class (call it A), C++ insists

on calling an A constructor before calling a B constructor, so that the derived class is guaranteed

never to see its inherited fields in an inconsistent state. When the programmer creates an object

of class B (either via declaration or with a call to new), the creation operation specifies

arguments for a B constructor.

These arguments allow the C++ compiler to resolve overloading when multiple constructors

exist.

But where does the compiler obtain arguments for the A constructor?

Adding them to the creation syntax (as Simula does) would be a clear violation of abstraction.

The answer adopted in C++ is to allow the header of the constructor of a derived class to specify

base class constructor arguments:

foo::foo(foo params) : bar(bar args)

{

...

Here foo is derived from bar. The list foo params consists of formal parameters for this particular

foo constructor.

Between the parameter list and the opening brace of the subroutine definition is a ―call‖ to a

constructor for the base class bar.

The arguments to the bar constructor can be arbitrarily complicated expressions involving the

foo parameters. The compiler will arrange to execute the bar constructor before beginning

execution of the foo constructor.

iv) Garbage Collection

When a C++ object is destroyed, the destructor for the derived class is called first, followed by

those of the base class(es), in reverse order of derivation. By far the most common use of

destructors in C++ is manual storage reclamation.

Suppose, for example, that we were to create a list or queue of character-string names:

class name_list_node : public gp_list_node {

char *name; // pointer to the data in a node

public:

name_list_node() {

name = 0; // empty string

CSE DEPARTMENT, NCERC PAMPADY Page 116

}

name_list_node(char *n) {

name = new char[strlen(n)+1];

strcpy(name, n); // copy argument into member

}

˜name_list_node() {

if (name != 0) {

delete[] name; // reclaim space

}

}

};

The destructor in this class serves to reclaim space that was allocated in the heap by the

constructor.

In languages with automatic garbage collection, there is much less need for destructors. In fact,

the entire idea of destruction is suspect in a garbage-collected language, because the programmer

has little or no control over when an object is going to be destroyed. Java and C# allow the

programmer to declare a finalize method that will be called immediately before the garbage

collector reclaims the space for an object, but the feature is not widely used.

DYNAMIC METHOD BINDING

One of the principal consequences of inheritance/type extension is that a derived class D has all

the members—data and subroutines—of its base class C. As long as D does not hide any of the

publicly visible members of C it makes sense to allow an object of class D to be used in any

context that expects an object of class C: anything we might want to do to an object of class C

we can also do to an object of class D. In Ada terminology, a derived class that does not hide any

publicly visible members of its base class is a subtype of that base class.

The ability to use a derived class in a context that expects its base class is called SUBTYPE

POLYMORPHISM.

If we imagine an administrative computing system for a university, we might derive classes

student and

professor from class person:

class person { ...

class student : public person { ...

class professor : public person { ...

CSE DEPARTMENT, NCERC PAMPADY Page 117

Because both student and professor objects have all the properties of a person

object, we should be able to use them in a person context:

student s;

professor p;

...

person *x = &s;

person *y = &p;

Moreover a subroutine like

void person::print_mailing_label() { ...

would be polymorphic—capable of accepting arguments of multiple types:

As with other forms of polymorphism, we depend on the fact that print_mailing_ label uses only

those features of its formal parameter that all actual parameters will have in common.

But now suppose that we have redefined print_mailing_label in each of the two derived classes.

We might, for example, want to encode certain information (student‘s year in school, professor‘s

home department) in the corner of the label.

Now we have multiple versions of our subroutine—student:: print_mailing_label and

professor::print_mailing_label, rather than the single, polymorphic person::print_mailing_label.

Which version we will get depends on the object:

Does the choice of the method to be called depend on the types of the variables x and y, or on

the classes of the objects s and p to which those variables refer?

The first option (use the type of the reference) is

known as static method binding.

CSE DEPARTMENT, NCERC PAMPADY Page 118

The second option (use the class of the object) is

known as dynamic method binding

Dynamic method binding is central to object-oriented programming.

Imagine, for example, that our administrative computing program has created a list of persons

who have overdue library books. The list may contain both students and professors. If we

traverse the list and print a mailing label for each person, dynamic method binding will ensure

that the correct printing routine is called for each individual. In this situation the definitions in

the derived classes are said to override the definition in the base class.

Virtual and Nonvirtual Methods

In Simula, C++, and C#, which use static method binding by default, the programmer can specify

that particular methods should use dynamic binding by labelling them as virtual.

Calls to virtual methods are dispatched to the appropriate implementation at run time, based on

the class of the object, rather than the type of the reference.

In C++ and C#, the keyword virtual prefixes the subroutine declaration:

class person {

public:

virtual void print_mailing_label();

...

In Simula, virtual methods are listed at the beginning of the class declaration:

CLASS Person;

VIRTUAL: PROCEDURE PrintMailingLabel;

BEGIN

...

PROCEDURE PrintMailingLabel...

COMMENT body of subroutine

...

END Person;

Ada 95 adopts a different approach.

Rather than associate dynamic dispatch

with particular methods, the Ada 95 programmer associates it with certain references.

Polymorphism

We have already noted that dynamic method binding introduces polymorphism

CSE DEPARTMENT, NCERC PAMPADY Page 119

(specifically, subtype polymorphism) into any code that expects a reference to an object of some

base class foo. So long as objects of the derived class support the operations of the base class, the

code will work equally well with references to objects of any class derived from foo.

By declaring a reference parameter to be of class foo, for example, the programmer asserts that

the subroutine uses only the

―foo features‖ of the parameter, and will work on any object that provides those

features.

MULTIPLE INHERITANCE

At times it can be useful for a derived class to inherit features from more than

one base class. Suppose, for example, that we want our administrative computing system to keep

all students of the same year (freshmen, sophomores, juniors, seniors, nonmatriculated) on some

list. It may then be desirable to derive class student from both person and gp_list_node.

In C++ we can say

class student : public person, public gp_list_node { ...

Now an object of class student will have all the fields and methods of both a person and a

gp_list_node.

The declaration in Eiffel is analogous:

class student

inherit

person

gp_list_node

feature

...

Multiple inheritance also appears in CLOS and Python. Simula, Smalltalk, Objective-C, Modula-

3, Ada 95, and Oberon have only single inheritance. Java, C#, and Ruby provide a limited, ―mix-

in‖ form of multiple inheritance, in which only one parent class is permitted to have fields.

Multiple inheritance introduces a wealth of semantic and pragmatic issues, which we consider

on the PLP CD.

1) Suppose two parent classes provide a method with the same name. Which one

do we use in the child? Can we access both?

2) Suppose two parent classes are both derived from some common―grandparent‖

class. Does the ―grandchild‖ have one copy or two of the grandparent‘s fields?

3) Our implementation of single inheritance relies on the fact that the representation

CSE DEPARTMENT, NCERC PAMPADY Page 120

of an object of the parent class is a prefix of the representation of an object of a derived

class.With multiple inheritance, how can each parent be a prefix of the child?

Multiple inheritance with a common grandparent‖ is known as REPEATED INHERITANCE.

Repeated inheritance with separate copies of the grandparent is known as REPLICATED

INHERITANCE; repeated inheritance with a single copy of the grandparent is known as

SHARED INHERITANCE.

Shared inheritance is the default in Eiffel. Replicated inheritance is the default in C++.

Both languages allow the programmer to

obtain the other option when desired.

Much of the complexity disappears if we insist, as Java, C#, or Ada 2005, that

all but one of the parent classes consist of methods only. All three languages call

such a class AN INTERFACE.

SCRIPTING LANGUAGES

All scripting languages are programming languages.

The scripting language is basically a language where instructions are written for a run time

environment.

They do not require the compilation step and are rather interpreted.

It brings new functions to applications and glue complex system together.

A scripting language is a programming language designed for integrating and communicating

with other programming languages.

There are many scripting languages some of them are discussed below:

 bash: It is a scripting language to work in the Linux interface. It is a lot easier to use bash

to create scripts than other programming languages. It describes the tools to use and code

in the command line and create useful reusable scripts and conserve documentation for

other people to work with.

 Node js: It is a framework to write network applications using JavaScript Corporate

users of Node.js include IBM, LinkedIn, Microsoft, Netflix, PayPal, Yahoo for real-time

web applications.

 Ruby: There are a lot of reasons to learn Ruby programming language. Ruby‘s flexibility

has allowed developers to create innovative software. It is a scripting language which is

great for web development.

 Python: It is easy, free and open source. It supports procedure-oriented programming and

object-oriented programming. Python is an interpreted language with dynamic semantics

and huge lines of code are scripted and is currently the most hyped language among

developers.

CSE DEPARTMENT, NCERC PAMPADY Page 121

 Perl: A scripting language with innovative features to make it different and popular.

Found on all windows and Linux servers. It helps in text manipulation tasks. High traffic

websites that use Perl extensively include priceline.com, IMDB.

Advantages of scripting languages:

 Easy learning: The user can learn to code in scripting languages quickly, not much

knowledge of web technology is required.

 Fast editing: It is highly efficient with the limited number of data structures and

variables to use.

 Interactivity: It helps in adding visualization interfaces and combinations in web pages.

Modern web pages demand the use of scripting languages. To create enhanced web

pages, fascinated visual description which includes background and foreground colors

and so on.

 Functionality: There are different libraries which are part of different scripting

languages. They help in creating new applications in web browsers and are different from

normal programming languages.

Application of Scripting Languages:

 Scripting languages are used in many areas:

 Scripting languages are used in web applications. It is used in server side as well as client

side. Server side scripting languages are: JavaScript, PHP, Perl etc. and client side

scripting languages are: JavaScript, AJAX, jQuery etc.

 Scripting languages are used in system administration. For example: Shell, Perl, Python

scripts etc.

 It is used in Games application and Multimedia.

 It is used to create plugins and extensions for existing applications.

MODULE – 6

CONCURRENCY

Program is said to be concurrent if it may have more than one active execution context—more

than one ―thread of control.‖

Concurrency has at least three important motivations:

1. To capture the logical structure of a problem. Many programs, particularly servers and

graphical applications, must keep track of more than one largely independent ―task‖ at the same

time. Often the simplest and most logical way to structure such a program is to represent each

task with a separate thread of control.

CSE DEPARTMENT, NCERC PAMPADY Page 122

2. To exploit extra processors, for speed. Long a staple of high-end servers and super computers

,multiple processors have recently become ubiquitous in desktop and laptop machines. To use

them effectively, programs must generally be written (or rewritten) with concurrency in mind.

3. To cope with separate physical devices. Applications that run across the Internet or a more

local group of machines are inherently concurrent. Likewise, many embedded applications—the

control systems of a modern automobile, for example—often have separate processors for each

of several devices.

* In general, we use the word concurrent to characterize any system in which two or more tasks

may be underway at the same time.

* Under this definition, coroutines are not concurrent, because at any given time, all but one of

them is stopped at a well-known place.

* A concurrent system is parallel if more than one task can be physically active at once; this

requires more than one processor.

* A parallel system is distributed if its processors are associated with people or devices that are

physically separated from one another in the real world.

Levels of Parallelism

Parallelism arises at every level of a modern computer system. It is comparatively easy to exploit

at the level of circuits and gates, where signals can propagate down thousands of connections at

once. As we move up first to processors and then to the many layers of software that run on top

of them, the granularity of parallelism—the size and complexity of tasks—increases at every

level, and it becomes increasingly difficult to figure out what work should be done by each task

and how tasks should coordinate.

At the next higher level of granularity, so-called vector parallelism is available in programs that

perform operations repeatedly on every element of a very large data set.

Unfortunately, vector parallelism arises in only certain kinds of programs.

General-purpose computing has moved to multicore processors, which require coarser-grain

thread-level parallelism.

Levels of Abstraction

With the spread of thread-level parallelism, different kinds of programmers will need to

understand concurrency at different levels of detail, and use it in different ways.

The simplest, most abstract case will arise when using ―black box‖ parallel libraries.

CSE DEPARTMENT, NCERC PAMPADY Page 123

At a slightly less abstract level, a programmer may know that certain tasks are mutually

independent. Such tasks can safely execute in parallel

If our tasks are not independent, it may still be possible to run them in parallel if we explicitly

synchronize their interactions. Synchronization serves to eliminate races between threads by

controlling the ways in which their actions can interleave in time.

A race condition occurs whenever two or more threads are ―racing‖ toward points in the code

at which they touch some common object, and the behavior of the system depends on which

thread gets there first.

The most common purpose of synchronization is to make some sequence of instructions, known

as a critical section, appear to be atomic—to happen ―all at once‖ from the point of view of

every other thread.

The most common way to make the sequence atomic is with a mutual exclusion lock, which we

acquire before the first instruction of the sequence and release after the last.

Example : A simple race condition

int zero_count;

public static int foo(int n) {

int rtn = n - 1;

if (rtn == 0) zero_count++;

return rtn;

}

Consider now what may happen when two or more instances of this code run concurrently.

If the instructions interleave roughly as shown, both threads may load the same value of zero

count, both may increment it by 1, and both may store the (only 1 greater) value back into zero

count. The result may be 1 less than what we expect.

CSE DEPARTMENT, NCERC PAMPADY Page 124

In general, a race condition occurs whenever two or more threads are ―racing‖ toward points in

the code at which they touch some common object, and the behavior of the system depends on

which thread gets there first.

The Case for Multithreaded Programs

The use of many threads ensures that comparatively fast operations (e.g., display of text) do not

wait for slow operations (e.g., display of large images).Whenever one thread blocks (waits for a

message or I/O), the implementation automatically switches to a different thread. In a preemptive

thread package, the implementation switches among threads at other times as well (i.e., it

performs a context switch), to prevent any one thread from hogging the CPU. Any reader who

remembers the early, more sequential browsers will appreciate the difference that multithreading

makes in perceived performance and responsiveness.

Multiprocessor Architecture

Single-site (nondistributed) parallel computers can be grouped into two broad categories: * *

1)those in which processors share access to common memory, and

2)those in which they must communicate with messages.

Shared-memory machines are typically referred to as multiprocessors, though occasionally one

hears that term applied to message-based machines as well. A multiprocessor typically occupies

a single chassis, in which the processors share not only memory, but also disks, power supplies,

and a single copy of the operating system in which they must communicate with messages.

From the point of view of language or library implementation, the principal distinction between

shared-memory and message-passing hardware is that messages typically require the active

participation of processors at both ends of the connection: one to send, the other to receive. On a

shared-memory machine, a processor can read and write remote memory without the assistance

of a remote processor. In most cases remote reads and writes use the same interface (i.e., load

and store instructions) as local reads and writes.

Memory Coherence

On a message-passing machine, each processor caches its own memory independently.

On a shared-memory machine, however, caches introduce a serious problem: unless we do

something special, a processor that has cached a particular memory location will not see changes

that are made to that location by other processors This problem—how to keep cached copies of a

memory location consistent with one another—is known as the coherence problem. On bus-

based symmetric machines, the problem is relatively easy to solve: the broadcast nature of the

communication medium allows cache controllers to eavesdrop (snoop) on the memory traffic of

other processors. When a processor needs to write a cache line, it requests an exclusive copy, and

CSE DEPARTMENT, NCERC PAMPADY Page 125

waits for other processors to invalidate their copies. On a bus the waiting is trivial, and the

natural ordering of messages determines who wins in the event of near-simultaneous requests.

Processors that try to access a line in the wake of invalidation must go back to memory (or to

another processor‘s cache) to obtain an up-to-date copy.

Supercomputers

Because of the complexity of cache coherence, it is difficult to build large shared memory

machines. Today‘s fastest machines are constructed from special high-density, low-power

multicore chips. From a programming language perspective, the special challenge of

supercomputing is to accommodate nonuniform access times and (in most cases) the lack of

hardware support for shared memory across the full machine. Today‘s supercomputers are

programmed mostly with message-passing libraries (MPI in particular) and with languages and

libraries in which there is a clear syntactic distinction between local and remote memory access.

CONCURRENT PROGRAMMING FUNDAMENTALS

Within a concurrent program, we will use the term thread to refer to the active entity that the

programmer thinks of as running concurrently with other threads. In most systems, the threads of

a given programare implemented on top of one or more processes provided by the operating

system. OS designers often distinguish between a heavyweight process, which has its own

address space, and a collection of lightweight processes, which may share an address space

We will sometimes use the word task to refer to a well-defined unit of work that must be

performed by some thread. In one common programming idiom, a collection of threads shares a

common ―bag of tasks‖—a list of work to be done. Each thread repeatedly removes a task from

the bag, performs it, and goes back for another. Sometimes the work of a task entails adding new

tasks to the bag.

1) Communication and Synchronization

CSE DEPARTMENT, NCERC PAMPADY Page 126

In any concurrent programming model, two of the most crucial issues to be addressed are

communication and synchronization.

 Communication refers to any mechanism that allows one thread to obtain information

produced by another. Communication mechanisms for imperative programs are generally

based on either shared memory or message passing. In a shared-memory programming

model, some or all of a program‘s variables are accessible to multiple threads. For a pair

of threads to communicate, one of them writes a value to a variable and the other simply

reads it. In a message-passing programming model, threads have no common state. For a

pair of threads to communicate, one of them must perform an explicit send operation to

transmit data to another.

 Synchronization refers to any mechanism that allows the programmer to control the

relative order in which operations occur in different threads. Synchronization is generally

implicit in message-passing models: a message must be sent before it can be received. If

a thread attempts to receive a message that has not yet been sent, it will wait for the

sender to catch up. Synchronization is generally not implicit in shared-memory models:

unless we do something special, a ―receiving‖ thread could read the ―old‖ value of a

variable, before it has been written by the―sender.‖

In both shared-memory and message-based programs, synchronization can be implemented

either by spinning (also called busy-waiting) or by blocking.

*In busy-wait synchronization (SPINNING), a thread runs a loop in which it keeps reevaluating

some condition until that condition becomes true.

*In BLOCKING synchronization (also called scheduler-based synchronization), the waiting

thread voluntarily relinquishes its processor to some other thread. Before doing so, it leaves a

note in some data structure associated with the synchronization condition. A thread that makes

the condition true at some point in the future will find the note and take action to make the

blocked thread run again.

2) Languages and Libraries

Thread-level concurrency can be provided to the programmer in the form of explicitly concurrent

languages, compiler-supported extensions to traditional sequential languages, or library packages

outside the language proper. All three options are widely used, though shared-memory languages

are more common at the ―low end‖ (for multicore and small multiprocessor machines), and

message passing libraries are more common at the ―high end‖(for massively parallel

supercomputers).

3. THREAD CREATION SYNTAX

CSE DEPARTMENT, NCERC PAMPADY Page 127

Almost every concurrent system allows threads to be created (and destroyed) dynamically.

Syntactic and semantic details vary considerably from one language or library to another, but

most conform to one of six principal options:

 co-begin,

 parallel loops,

 launch-at-elaboration,

 fork (with optional join),

 implicit receipt, and

 early reply.

The first two options delimit threads with special control-flow constructs.

The others use syntax resembling (or identical to) subroutines.

Most libraries use fork/join, as do Java and C#. Ada uses both launch-at-elaboration and fork.

OpenMP uses co-begin and parallel loops. RPC systems are typically based on implicit receipt.

Co-begin

The usual semantics of a compound statement (sometimes delimited with begin. . . end) call for

sequential execution of the constituent statements. A co-begin construct calls instead for

concurrent execution:

co-begin – – all n statements run concurrently

stmt 1

stmt 2

. . .

stmt n

end

Each statement can itself be a sequential or parallel compound, or (commonly) a subroutine call.

Parallel Loops

Many concurrent systems, including OpenMP, several dialects of Fortran, and the recently

announced Parallel FX Library for .NET, provide a loop whose iterations are to be executed

concurrently. In OpenMP for C, we might say

#pragma omp parallel for

for (int i = 0; i < 3; i++) {

printf("thread %d here\n", i);

}

CSE DEPARTMENT, NCERC PAMPADY Page 128

Launch-at-Elaboration

In several languages, Ada among them, the code for a thread may be declared with syntax

resembling that of a subroutine with no parameters. When the declaration is elaborated, a thread

is created to execute the code. In Ada (which calls its threads tasks) we may write

procedure P is

task T is

...

end T;

begin -- P

...

end P;

Task T has its own begin. . . end block, which it begins to execute as soon as control enters

procedure P. If P is recursive, there may be many instances of T at the same time, all of which

execute concurrently with each other and with whatever task is executing (the current instance

of) P. The main program behaves like an initial default task.

When control reaches the end of procedure P, it will wait for the appropriate instance of T (the

one that was created at the beginning of this instance of P) to complete before returning. This

rule ensures that the local variables of P (which are visible to T under the usual static scope

rules) are never deallocated before T is done with them.

CSE DEPARTMENT, NCERC PAMPADY Page 129

Fork/Join

Co-begin, parallel loops, and launch-at-elaboration all lead to a concurrent control-flow pattern

in which thread executions are properly nested (see Figure 12.5a). The fork operation is more

general: it makes the creation of threads an explicit, executable operation. The companion join

operation, when provided, allows a thread to wait for the completion of a previously forked

thread. Because fork and join are not tied to nested constructs, they can lead to arbitrary patterns

of concurrent control flow (Figure 12.5b).

In addition to providing launch-at-elaboration tasks, Ada allows the programmer to define task

types:

task type T is

...

begin

...

end T;

The programmer may then declare variables of type access T (pointer to T), and

may create new tasks via dynamic allocation:

pt : access T := new T;

The new operation is a fork; it creates a new thread and starts it executing. There is no explicit

join operation in Ada, though parent and child tasks can always synchronize with one another

explicitly if desired.

Implicit Receipt

We have assumed in all our examples so far that newly created threads will run in the address

space of the creator. In RPC systems it is often desirable to create a new thread automatically in

response to an incoming request from some other address space. Rather than have an existing

thread execute a receive operation, a server can bind a communication channel to a local thread

body or subroutine. When a request comes in, a new thread springs into existence to handle it. In

effect, the bind operation grants remote clients the ability to perform a fork within the server‘s

address space, though the process is often less than fully automatic.

Early Reply

We normally think of sequential subroutines in terms of a single thread, which saves its current

context (its program counter and registers), executes the subroutine, and returns to what it was

doing before.

CSE DEPARTMENT, NCERC PAMPADY Page 130

The effect is the same, however, if we have two threads—one that executes the caller and

another that executes the callee. In this case, the call is essentially a fork/join pair. The caller

waits for the callee to terminate before continuing execution.

Nothing dictates, however, that the callee has to terminate in order to release the caller; all it

really has to do is complete the portion of its work on which result parameters depend the callee

can execute a reply operation that returns results to the caller without terminating. After an early

reply, the two threads continue concurrently.

IMPLEMENTATION OF THREADS

The threads of a concurrent program are usually implemented on top of one or more processes

provided by the operating system. At one extreme, we could use a separate OS process for every

thread; at the other extreme we could multiplex all of a program‘s threads on top of a single

process. On a supercomputer with a separate processor for every concurrent activity, or in a

language in which threads are relatively heavyweight abstractions the one-process-per-thread

extreme is often acceptable. Many language implementations adopt an intermediate approach,

with a potentially very large number of threads running on top of some smaller number of

processes (see Figure 12.6).

The problem with putting every thread on a separate process is that processes are simply too

expensive in many operating systems. Because they are implemented in the kernel, performing

any operation on them requires a system call. Because they are general purpose, they provide

features that most languages do not need, but have to pay for anyway.

In the common two-level organization of concurrency similar code appears at both levels of the

system: the language run-time system implements threads on top of one or more processes in

much the same way that the operating system implements processes on top of one or more

physical processors.

To turn coroutines into threads, we proceed in a series of three steps.

--First, we hide the argument to transfer by implementing a scheduler that chooses which thread

to run next when the current thread yields the processor.

--Second, we implement a preemption mechanism that suspends the current thread automatically

on a regular basis, giving other threads a chance to run.

--Third, we allow the data structures that describe our collection of threads to be shared by more

than one OS process, possibly on separate processors, so that threads can run on any of the

processes.

CSE DEPARTMENT, NCERC PAMPADY Page 131

Uniprocessor Scheduling

At any particular time, a thread is either blocked (i.e., for synchronization) or runnable. A

runnable thread may actually be running on some process or it may be awaiting its chance to do

so. Context blocks for threads that are runnable but not currently running reside on a queue

called the ready list. Context blocks for threads that are blocked for scheduler-based

synchronization reside in data structures associated with the conditions for which they are

waiting. To yield the processor to another thread, a running thread calls the scheduler:

procedure reschedule

t : thread := dequeue(ready list)

transfer(t)

CSE DEPARTMENT, NCERC PAMPADY Page 132

SYNCHRONIZATION

Synchronization is the principal semantic challenge for shared-memory concurrent programs.

Typically, synchronization serves either to make some operation atomic or to delay that

operation until some necessary precondition holds. Mutual exclusion ensures that only one

thread is executing some critical section of code at a given point in time. Critical sections

typically transform a shared data structure from one consistent state to another.

Condition synchronization allows a thread to wait for a precondition, often expressed as a

predicate on the value(s) in one or more shared variables. It is tempting to think of mutual

exclusion as a form of condition synchronization but this sort of condition would require

consensus among all extant threads, something that condition synchronization doesn‘t generally

provide.

 Busy-Wait Synchronization

 Nonblocking Algorithms

Busy-Wait Synchronization

Busy-wait condition synchronization is easy if we can cast a condition in the form of ―location X

contains value Y ‖: a thread that needs to wait for the condition can simply read X in a loop,

waiting for Y to appear. To wait for a condition involving more than one location, one needs

atomicity to read the locations together, but given that, the implementation is again a simple

loop.

 SPIN LOCKS

 BARRIERS

Spin Locks

practical spin lock needs to run in constant time and space, and for this one needs an atomic

instruction that does more than load or store. Beginning in the 1960s, hardware designers began

to equip their processors with instructions that read, modify, and write a memory location as a

single atomic operation. The simplest such instruction is known as test_and_set. It sets a Boolean

variable to true and returns an indication of whether the variable was previously false. Given

test_and_set, acquiring a spin lock is almost trivial:

while not test and set(L)

– – nothing – – spin

CSE DEPARTMENT, NCERC PAMPADY Page 133

In practice, embedding test_and_set in a loop tends to result in unacceptable amounts of

communication on a multiprocessor, as the cache coherence mechanism attempts to reconcile

writes by multiple processors attempting to acquire the lock.

This over demand for hardware resources is known as contention, and is a major obstacle to

good performance on large machines. To reduce contention, the writers of synchronization

libraries often employ a test-and-test_and_set lock, which spins with ordinary reads.

Barriers

Data-parallel algorithms are often structured as a series of high-level steps, or

phases, typically expressed as iterations of some outermost loop. Correctness often

depends on making sure that every thread completes the previous step before any

moves on to the next. A barrier serves to provide this synchronization. The simplest way to

implement a busy-wait barrier is to use a globally shared counter, modified by an atomic

fetch_and_decrement instruction.

Nonblocking Algorithms

When a lock is acquired at the beginning of a critical section, and released at the end, no other

thread can execute a similarly protected piece of code at the same time. As long as every thread

follows the same conventions, code within the critical section is atomic—it appears to happen all

at once. But this is not the only possible way to achieve atomicity.

Semaphores

Semaphores are the oldest of the scheduler-based synchronization mechanisms.

A semaphore is basically a counter with two associated operations, P and V. A thread that calls P

atomically decrements the counter and then waits until it is non-negative. A thread that calls V

atomically increments the counter and wakes up a waiting thread, if any. It is generally assumed

that semaphores are fair, in the sense that threads complete P operations in the same order they

start them. A semaphore whose counter is initialized to 1 and for which P and V operations

always occur in matched pairs is known as a binary semaphore. It serves as a scheduler-based

mutual exclusion lock: the P operation acquires the lock; V releases it.

Implicit Synchronization

In several shared-memory languages, the operations that threads can perform on

shared data are restricted in such a way that synchronization can be implicit in

the operations themselves, rather than appearing as separate, explicit operations.

RUN-TIME PROGRAM MANAGEMENT

CSE DEPARTMENT, NCERC PAMPADY Page 134

 Runtime is when a program is running (or being executable). That is, when you start a program

running in a computer, it is runtime for that program. In some programming languages, certain

reusable programs or "routines" are built and packaged as a "runtime library." These routines can

be linked to and used by any program when it is running.

Programmers sometimes distinguish between what gets embedded in a program when it

is compiler and what gets embedded or used at runtime. The former is sometimes called

"compile time."

For a number of years, technical writers resisted "runtime" as a term, insisting that something

like "when a program is run" would obviate the need for a special term. Gradually, the term crept

into general usage.

VIRTUAL MACHINES

A virtual machine (VM)provides a complete programming environment: its application

programming interface (API) includes everything required for correct execution of the programs

that run above it. We typically reserve use of the term― VM to environments whose level of

abstraction is comparable to that of a computer implemented in hardware. Every virtual machine

API includes an instruction set architecture (ISA) in which to express programs. This may be the

same as the instruction set of some existing physical machine, or it may be an artificial

instruction set designed to be easier to implement in software and to generate with a compiler. In

practice, virtual machines tend to be characterized as either system VMs or process VMs. A

system VM faithfully emulates all the hardware facilities needed to run a standard OS, including

both privileged and unprivileged instructions,

memory-mapped I/O, virtual memory, and interrupt facilities. By contrast, a process

VM provides the environment needed by a single user-level process: the unprivileged subset of

the instruction set and a library-level interface to I/O and other services.

System VMs are sometimes called virtual machine monitors (VMMs), because they multiplex a

single physical machine among a collection of ―guest‖ operating systems—that is, they monitor

the execution of multiple virtual machines, each of which runs a separate guest OS.

Process VMs were originally conceived as a way to increase program portability and to quickly

―bootstrap‖ languages on new hardware.

The Java Virtual Machine

Development of the language that eventually became Java began in 1990–1991, when Patrick

Naughton, James Gosling, and Mike Sheridan of Sun Microsystem began work on a

programming system for embedded devices. An early version of this system was up and running

in 1992, at which time the language was known as Oak. In 1994, after unsuccessful attempts to

break into the market for cable TV set-top boxes, the project was retargeted to web browsers, and

the name was changed to Java. The first public release of Java occurred in 1995. At that time

https://searchsecurity.techtarget.com/definition/executable
https://whatis.techtarget.com/definition/compiler

CSE DEPARTMENT, NCERC PAMPADY Page 135

code in the JVM was entirely interpreted. A JIT compiler was added in 1998 with the release of

Java 2.

Architecture Summary

The interface provided by the JVM was designed to be an attractive target for a Java compiler. It

provides direct support for all (and only) the built-in and reference types defined by the Java

language. It also enforces both definite assignment and type safety. Finally, it includes built-in

support for many of Java‘s language features and standard library packages, including

exceptions, threads, garbage collection, reflection, dynamic loading, and security. Of course,

nothing requires that Java byte code (JBC) be produced from Java source.

Compilers targeting the JVM exist for many other languages, including Ruby, JavaScript,

Python, and Scheme (all of which are traditionally interpreted), as well as C, Ada, Cobol, and

others, which are traditionally compiled. There are even assemblers that allow programmers to

write JBC directly. The principal requirement, for both compilers and assemblers, is that they

generate correct class files. These have a special format understood by the JVM, and must satisfy

a variety of structural and semantic constraints.

At start-up time, a JVM is typically given the name of a class file containing the static method

main. It loads this class into memory, verifies that it satisfies a variety of required constraints,

allocates any static fields, links it to any preloaded library routines, and invokes any initialization

code provided by the programmer for classes or static fields. Finally, it calls main in a single

thread. Additional classes (needed by the initial class) may be loaded either immediately or lazily

on demand. Additional threads may be created via calls to the (built-in) methods of class Thread.

The three following subsections provide additional details on JVM

storage management, the format of class files, and the JBC instruction set.

Storage Management

Storage allocation mechanisms in the JVM mirror those of the Java language. There is a global

constant pool, a set of registers and a stack for each thread, a method area to hold executable

byte code, and a heap for dynamically allocated objects.

Per-thread data A program running on the JVM begins with a single thread.

Additional threads are created by allocating and initializing a new object of the build-in class

Thread, and then calling its start method. Each thread has a small set of base registers, a stack of

method call frames, and an optional traditional stack on which to call native (non-Java) methods.

Each frame on the method call stack contains an array of local variables, an

operand stack for evaluation of the method‘s expressions, and a reference into the constant pool

that identifies information needed for dynamic linking of called methods. Space for formal

parameters is included among the local variables. Variables that are not live at the same time can

CSE DEPARTMENT, NCERC PAMPADY Page 136

share a slot in the array; this means that the same slot may be used at different times for data of

different types.

Heap In keeping with the type system of the Java language, a datum in the local variable array or

the operand stack is always either a reference or a value of a built-in scalar type. Structured data

(objects and arrays) must always lie in the heap. They are allocated, dynamically, using the new

and newarray instructions. They are reclaimed automatically via garbage collection. The choice

of collection algorithm is left to the implementor of the JVM.

Class Files

Physically, a JVM class file is stored as a stream of bytes. Typically these occupy some real file

provided by the operating system, but they could just as easily be a record in a database. On

many systems, multiple class files may be combined into a Java archive (.jar) file.

Logically, a class file has a well-defined hierarchical structure. It begins with a ―magic number‖

(0x_cafe_babe), as described in the sidebar on page 662. This is followed by

Major and minor version numbers of the JVM for which the file was created The constant pool

Indices into the constant pool for the current class and its superclass Tables describing the class‘s

superinterfaces, fields, and methods Because the JVM is both cleaner and more abstract than a

real machine, the Java class file structure is both cleaner and more abstract than a typical object

file.

Byte Code

The byte code for a method (or for a constructor or a class initializer) appears in an entry in the

class file‘s method table. It is accompanied by: An indication of the number of local variables,

including parameters The maximum depth required in the operand stack

A table of exception handler information, each entry of which indicates

– The byte code range covered by this handler

– The address (index in the code) of the handler itself

– The type of exception caught (an index into the constant pool)

Optional information for debuggers: specifically, a table mapping byte code addresses to line

numbers in the original source code and/or a table indicating which source code variable(s)

occupy which JVM local variables at which points in the byte code.

Instruction Set Java byte code was designed to be both simple and compact. Orthogonality was

a strictly secondary concern. Every instruction begins with a single-byte opcode. Arguments, if

any, occupy subsequent (unaligned) bytes, with values given in big-endian order. Most

instructions actually don‘t need an argument. Five of these serve special purposes (unused, nop,

CSE DEPARTMENT, NCERC PAMPADY Page 137

debugger breakpoints, implementation dependent). The remainder can be organized into the

following categories.

Load/store: Move values back and forth between the operand stack and the local

variable array.

Arithmetic: Performinteger or floating point operations on values in the operand

stack.

Type conversion: ―Widen‖ or ―narrow‖ values among the built-in types (byte,

char, short, int, long, float, and double). Narrowing may result in a loss

of precision but never an exception.

Object management: Create or query the properties of objects and arrays; access

fields and array elements.

Operand stack management: Push and pop; duplicate; swap.

Control transfer: Perform conditional, unconditional, or multiway branches

(switch).

Method calls: Call and return from ordinary and static methods (including constructors and

initializers) of classes and interfaces.

Exceptions: throw (no instructions required for catch).

Monitors: Enter and exit (wait, notify, and notifyAll are invoked viamethod

calls).

Verification Safety was one of the principal concerns in the definition of the

Java language and virtual machine. Many of the things that can ―go wrong‖ while executing

machine code compiled from a more traditional language cannot go wrong when executing byte

code compiled from Java. Some aspects of safety are obtained by limiting the expressiveness of

the byte-code instruction set or by checking properties at load time. One cannot jump to a

nonexistent address, for example, because method calls specify their targets symbolically by

name, and branch targets are specified as indices within the code attribute of the current method.

Similarly,where hardware allows displacement addressing fromthe frame pointer to access

memory outside the current stack frame, the JVM checks at load time to make sure that

references to local variables (specified by constant indices

into the local variable array) are within the bounds declared.

The Common Language Infrastructure

Work on the system that became the Common Language Infrastructure (CLI) began at Microsoft

Corporation in the late 1990s, and was able to benefit from experience with Java and the JVM,

which were already well established. The roots of the CLI, however, go back much further than

the advent of Java, and it is these deep roots that account for the most significant differences

between the virtual machines.

CSE DEPARTMENT, NCERC PAMPADY Page 138

As early as the mid-1980s, Microsoft recognized the need for interoperability among

programming languages running on Windows platforms. In a series of product offerings

spanning a decade and a half (see sidebar at bottom of page), the company developed

increasingly sophisticated versions of its Component Object Model (COM), first to communicate

with, then to call, and finally to share data across program components written in multiple

languages.

With the success of Java, it became clear by the mid to late 1990s that a system combining

a JVM-style run-time system with the language interoperability of COM could have enormous

technical and commercial potential. The .NET project set out to realize this potential. It is in

some sense a successor to COM, not based on prior code, nor constrained by backward

compatibility, but providing a superset of COM‘s functionality, and equipped with libraries that

allow it to interoperate with older programs. It includes not only a virtual machine, but extensive

libraries, servers, and tools for user interface management, database access, security services.

LATE BINDING OF MACHINE CODE

Compilation is a one-time activity, sharply distinguished from program execution. The compiler

produces a target program, typically in machine language, which can subsequently be executed

many times for many different inputs.

1. Just-in-Time and Dynamic Compilation

To promote the Java language and virtual machine, Sun Microsystems coined the slogan‖write

once, run anywhere‖—the idea being that programs distributed as Java byte code (JBC) could

run on a very wide range of platforms. Source code, of course, is also portable, but byte code is

much more compact, and can be interpreted without additional pre-processing. Unfortunately,

interpretation tends to be expensive. Programs running on early Java implementations could be

as much as an order of magnitude slower than compiled code in other languages. Just-in-time

compilation is, to first approximation, a technique to retain the portability of byte code while

improving execution speed. Like both interpretation and dynamic linking Because a JIT system

compiles programs immediately prior to execution, it can add significant delay to program start-

up time. Implementors face a difficult tradeoff: to maximize benefits with respect to

interpretation, the compiler should

produce good code; to minimize start-up time, it should produce that code very quickly. In

general, JIT compilers tend to focus on the simpler forms of target code improvement.

Specifically, they often limit themselves to so-called local improvements, which operate within

individual control flow constructs. Improvements at the global (whole method) and

interprocedural (whole program) level are usually too expensive to consider.

All these factors allows JIT compiler to be faster—and to produce better code— than one might

initially expect. In addition, since we are already committed to invoking the JIT compiler at run

CSE DEPARTMENT, NCERC PAMPADY Page 139

time, we can minimize its impact on program start-up latency by running it a bit at a time, rather

than all at once:

 Like a lazy linker JIT compilermay performitswork incrementally. It begins by compiling

only the class file that contains the program entry point (i.e., main), leaving hooks in the

code that call into the run-time system wherever the program is supposed to call a method

in another class file. After this small amount of preparation, the program begins

execution.

When execution falls into the runtime through an unresolved hook, the runtime invokes the

compiler to load the new class file and to link it into the program.

 To eliminate the latency of compiling even the original class file, the language

implementation may incorporate both an interpreter and a JIT compiler. Execution

begins in the interpreter. In parallel, the compiler translates portions of the program into machine

code.When the interpreter needs to call a method, it checks to see whether a compiled version is

available yet, and if so calls that version instead of interpreting the byte code.We will return to

this technique below, in the context of the HotSpot Java compiler and JVM.

 When a class file is JIT compiled, the language implementation can cache the resulting

machine code for later use. This amounts to guessing, speculatively, that the versions of

library routines employed in the current run of the program will still be current when the

program is run again. Because languages like Java and C# require the appearance of late

binding of library routines, this guess must be checked in each subsequent run. If the

check succeeds, using a cached copy saves almost the entire cost of JIT compilation.

Finally, JIT compilation affords the opportunity to perform certain kinds of code improvement

that are usually not feasible in traditional compilers. It is customary, for example, for software

vendors to ship a single compiled version of an application for a given instruction set

architecture, even though implementations of that architecture may differ in important ways,

including pipeline width and depth; the number of physical (renaming) registers; and the

number, size, and speed of the various levels of cache. A JIT compiler may be able to identify

the processor implementation on which it is running, and generate code that is tuned for that

specific implementation. More important, a JIT compiler may be able to in-line calls to

dynamically linked library routines. This optimization is particularly important in object-

oriented programs, which tend to call many small methods. For such programs, dynamic in-

lining can have a dramatic impact on performance.

Dynamic Compilation

CSE DEPARTMENT, NCERC PAMPADY Page 140

Language implementation may choose to delay JIT compilation to reduce the impact on

program start-up latency. In some cases, compilation must be delayed, either because the

source or byte code was not created or discovered until run time, or because we wish to

perform optimizations that depend on information gathered during execution. In these cases

we say the language implementation employs dynamic compilation. Common Lisp systems

have used dynamic compilation for many years: the language is typically compiled, but a

program can extend itself at run time. Optimization based on run-time statistics is a more

recent innovation.

Most programs spend most of their time in a relatively small fraction of the code. Aggressive

code improvement on this fraction can yield disproportionately large improvements in

program performance. A dynamic compiler can use statistics gathered by run-time profiling

to identify hot paths through the code, which it then optimizes in the background. By

rearranging the code to make hot paths contiguous in memory, it may also improve the

performance of the instruction cache.

In some situations, a dynamic compiler may even be able to perform optimization that would

be unsafe if implemented statically. In some cases, a dynamic compiler may choose to

perform optimizations that may be unsafe even in the current program, provided that

profiling suggests they will be profitable and run-time checks can determine whether they are

safe

2. Binary Translation

Just-in-time and dynamic compilers assume the availability of source code or of

byte code that retains all of the semantic information of the source. There are

times, however, when it can be useful to recompile object code. This process is

known as binary translation. It allows already-compiled programs to be run on a

machine with a different instruction set architecture.

The principal challenge for binary translation is the loss of information in

the original source-to-object code translation. Object code typically lacks both

type information and the clearly delineated subroutines and control-flow constructs

of source code and byte code. While most of this information appears in

the compiler‘s symbol table, and may sometimes be included in the object file

for debugging purposes, vendors usually delete it before shipping commercial

products, and a binary translator cannot assume it will be present.

The typical binary translator reads an object file and reconstructs a control

flow graph This task is complicated by the

lack of explicit information about basic blocks.While branches (the ends of basic

blocks) are easy to identify, beginnings are more difficult: since branch targets

are sometimes computed at run time or looked up in dispatch tables or virtual

function tables, the binary translator must consider the possibility that control

CSE DEPARTMENT, NCERC PAMPADY Page 141

may sometimes jump into the middle of a ―probably basic‖ block. Since translated

code will generally not lie at the same address as the original code, computed

branches must be translated into code that performs some sort of table lookup,

or falls back on interpretation.

Static binary translation is not always possible for arbitrary object code. In

addition to computed branches, problems include self-modifying code (programs

that write to their own instruction space), dynamically generated code.

Dynamic Optimization

In a long-running program, a dynamic translator may revisit hot paths and optimize

them more aggressively. A similar strategy can also be applied to programs

that don‘t need translation—that is, to programs that already exist as machine code for the

underlying architecture. This sort of dynamic optimization has been

reported to improve performance by as much as 20% over already-optimized

code, by exploiting run-time profiling information.

By identifying and optimizing traces, Dynamo is able to significantly improve

locality in the instruction cache, and to apply standard code improvement techniques

across the boundaries between separately compiled modules and dynamically

loaded libraries.

IN the figure given below -- For example, it will perform register allocation jointly across

print matchings and the predicate p. It can even perform instruction scheduling across basic

blocks if it inserts appropriate compensating code on branches out of the trace. An instruction

in block test2, for example, can be moved into the loop footer if a copy is placed on the

branch to the right. Traces have proven to be a very powerful technique.

CSE DEPARTMENT, NCERC PAMPADY Page 142

3. Binary Rewriting

While the goal of a binary optimizer is to improve the performance of a program without altering

its behavior, one can also imagine tools designed to change that behavior. Binary rewriting is a

general technique to modify existing executable programs, typically to insert instrumentation of

some kind. The most common form of instrumentation collects profiling information. One might

count the number of times that each subroutine is called, for example, or the number of times

that each loop iterates

Such counts can be stored in a buffer in memory, and dumped at the end of execution.

Alternatively, one might log all memory references. Such a log will generally need to be sent to a

file as the program runs—it will be too long to fit in memory.

In addition to profiling, binary rewriting can be used to

CSE DEPARTMENT, NCERC PAMPADY Page 143

 Simulate new architectures: operations of interest to the simulator are replaced with code

that jumps into a special run-time library (other code runs at native speed).

 Evaluate the coverage of test suites, by identifying paths through the code that are not

explored by a series of tests.

 Implement model checking for parallel programs, a process that exposes race conditions

by forcing a program through different interleavings of operations in different threads.

 ―Audit‖the quality of a compiler‘s optimizations. For example, one might check whether

the value loaded into a register is always the same as the value that was already there

(such loads suggest that the compiler may have failed to realize that the load was

redundant).

 Insert dynamic semantic checks into a program that lacks them. Binary rewriting can be

used not only for simple checks like null-pointer dereference and arithmetic overflow, but

for a wide variety of memory access errors as well, including uninitialized variables,

dangling references, memory leaks, ―double deletes‖ (attempts to deallocate an already

deallocated block of memory), and access off the ends of dynamically allocated arrays.

4. Mobile Code and Sandboxing

Portability is one of the principal motivations for late binding of machine code. Code that has

been compiled for one machine architecture or operating system cannot generally be run on

another. Code in a byte code (JBC, CIL) or scripting language (JavaScript, Visual Basic),

however, is compact and machine independent: it can easily be moved over the Internet and

run on almost any platform. Such mobile code is increasingly common.

Every major browser supports JavaScript; most enable the execution of Java applets as well.

Visual Basic macros are commonly embedded not only in pages meant for viewing with

Internet Explorer, but also in Excel, Word, and Outlook documents distributed via email.

Increasingly, cell phone platforms are using mobile code to distribute games, productivity

tools, and interactive media that run on the phones themselves.

In some sense, mobile code is nothing new: almost all our software comes from other

sources; we buy it on a DVD or download it over the Internet and install it on our machines.

Historically, this usage model has relied on trust (we assume that software from a well-

known company will be safe) and on the very explicit and occasional nature of installation.

What has changed in recent years is the desire to download code frequently, from potentially

untrusted sources, and often without the conscious awareness of the user. Mobile code carries

a variety of risks. It may access and reveal confidential information (spyware). It may

interfere with normal use of the computer in annoying ways (adware). It may damage

existing programs or data, or save copies of itself that run without the user‘s intent (malware

of various kinds). In the worst cases, it may use the host machine as a ―zombie‖ from which

to launch attacks on other users.

CSE DEPARTMENT, NCERC PAMPADY Page 144

To protect against unwanted behavior, both accidental and malicious, mobile code must be

executed in some sort of sandbox, Sandbox creation is difficult because of the variety of

resources that must be protected. At a minimum, one needs to monitor or limit access to

processor cycles, memory outside the code‘s own instructions and data, the file system,

network interfaces, other devices (passwords, for example, may be stolen by snooping the

keyboard), the window system (e.g., to disable pop-up ads), and any other potentially

dangerous services provided by the operating system.

Sandboxing mechanisms lie at the boundary between language implementation and

operating systems. Traditionally, OS-provided virtual memory techniques might be used to

limit access to memory, but this is generally too expensive for many forms of mobile code.

The two most common techniques today—both of which rely on technology discussed in this

chapter—are binary rewriting and execution in an untrusting interpreter. Both cases are

complicated by an inherent tension between safety and utility: the less we allow untrusted

code to do, the less useful it can be. No single policy is likely to work in all cases. Applets

may be entirely safe if all they can do is manipulate the image in a window, but macros

embedded in a spreadsheet may not be able to do their job without changing the user‘s data.

A major challenge for future work is to find a way to help users— who cannot be expected to

understand the technical details—to make informed decisions about what and what not to

allow in mobile code

INSPECTION/INTROSPECTION

Symbol table metadata makes it easy for utility programs—just-in-time and dynamic

compilers, optimizers, debuggers, profilers, and binary rewriters—to inspect a program and

reason about its structure and types There is no reason, however, why the use of metadata

should be limited to outside tools, and indeed it is not: Lisp has long allowed a program to

reason about its own internal structure and types (this sort of reasoning is sometimes called

introspection).

Java and C# provide similar functionality through a reflection API that allows a program to

peruse its own metadata. Reflection appears in several other languages as well, including

Prolog and all the major scripting languages. In a dynamically typed language such as Lisp,

reflection is essential: it allows a library or application function to type check its own

arguments. In a statically typed language, reflection supports a variety of programming

idioms that were not traditionally feasible.

REFLECTION

CSE DEPARTMENT, NCERC PAMPADY Page 145

Trivially, reflection can be useful when printing diagnostics. Suppose we are trying to debug

an old-style (nongeneric) queue in Java, and we want to trace the objects that move through

it.

In the dequeue method, just before returning an object rtn of type Object, we might write

System.out.println("Dequeued a " + rtn.getClass().getName());

If the dequeued object is a boxed int,we will see

Dequeued a java.lang.Integer

More significantly, reflection is useful in programs that manipulate other programs. Most

program development environments, for example, have mechanisms to organize and ―pretty-

print‖ the classes, methods, and variables of a program.

In a language with reflection, these tools have no need to examine source code: if they load

the already-compiled program into their own address space, they can use the reflection API

to query the symbol table information created by the compiler. Interpreters, debuggers, and

profilers can work in a similar fashion. In a distributed system, a program can use reflection

to create a general-purpose serialization mechanism, capable of transforming an almost

arbitrary structure into a linear stream of bytes that can be sent over a network and

reassembled at the other end.

In the increasingly dynamic world of Internet applications, one can even create conventions

by which a program can ―query‖ a newly discovered object to see what methods it

implements, and then choose which of these to call.

There are dangers, of course, associatedwith the undisciplined use of reflection. Because it

allows an application to peek inside the implementation of a class (e.g., to list its private

members), reflection violates the normal rules of abstraction and information hiding. It may

be disabled by some security policies (e.g., in sandboxed environments). By limiting the

extent to which target code can differ from the source, it may preclude certain forms of code

improvement.

SYMBOLIC DEBUGGING

CSE DEPARTMENT, NCERC PAMPADY Page 146

Most programmers are familiar with symbolic debuggers: they are built into most

programming language interpreters, virtual machines, and integrated program development

environments. They are also available as stand-alone tools, of which the best known is

GNU‘s gdb. The adjective symbolic refers to a debugger‘s understanding of high-level

language syntax—the symbols in the original program. Early debuggers understood assembly

language only.

In a typical debugging session, the user starts a program under the control of the debugger, or

attaches the debugger to an already running program. The debugger then allows the user to

perform two main kinds of operations. One kind inspects or modifies program data; the other

controls execution: starting, stopping, stepping, establishing breakpoints and watchpoints. A

breakpoint specifies that execution should stop if it reaches a particular location in the source

code. A watchpoint specifies that execution should stop if a particular variable is read or

written. Both breakpoints and watchpoints can typically be made conditional, so that

execution stops only if a particular Boolean predicate evaluates to true. Both data and control

operations depend critically on symbolic information. Both data and control operations also

depend on the ability to manipulate a program from outside: to stop and start it, and to read

and write its data.

This control can be implemented in at least three ways. The easiest occurs in interpreters.

Since an interpreter has direct access to the program‘s symbol table and is ―in the loop‖ for

the execution of every statement, it is a straightforward matter to move back and forth

between the program and the debugger, and to give the latter access to the former‘s data.

For compiled programs, the third implementation of debugger control is by far the most

common. It depends on support from the operating system. In Unix, it employs a kernel

service known as ptrace. The ptrace kernel call allows a debugger to ―grab‖ (attach to) an

existing process or to start a process under its control. The tracing process (the debugger) can

intercept any signals sent to the traced process by the operating system and can read and

write its registers and memory. If the traced process is currently running, the debugger can

stop it by sending it a signal. If it is currently stopped, the debugger can specify the address at

which it should resume execution, and can ask the kernel to run it for a single instruction (a

process known as single stepping) or until it receives another signal.

Perhaps the most mysterious parts of debugging from the user‘s perspective are the

mechanisms used to implement breakpoints, watchpoints, and single stepping. The default

implementation, which works on any modern processor, relies on the ability to modify the

memory space of the traced process—in particular, the portion containing the program‘s

code.

PERFORMANCE ANALYSIS

CSE DEPARTMENT, NCERC PAMPADY Page 147

Before placing a debugged program into production use, one often wants to understand and if

possible improve—its performance Perhaps the simplest way to measure, at least

approximately, the amount of time spent in each part of the code is to sample the program

counter (PC) periodically.

This approach was exemplified by the classic prof tool in Unix. By linking with a special

prof library, a program could arrange to receive a periodic timer signal—once a millisecond,

say—in response to which it would increment a counter associated with the current PC. After

execution, the prof post-processor would correlate the counters with an address map of the

program‘s code and produce a statistical summaryof the percentage of time spent in each

subroutine and loop.

While simple, prof had some serious limitations. Its results were only approximate, and could

not capture fine-grain costs. It also failed to distinguish among calls to a given routine

frommultiple locations. If we want to know which of A, B,

Call graph profiling and C is the biggest contributor to program run time, it is not particularly

helpful to learn that all three of them call D where most of the time is actually spent. If we

want to know whether it is A‘s Ds, B‘s Ds, or C‘s Ds that are so expensive, we can use the

(slightly) more recent gprof tool, which relies on compiler support to instrument procedure

prologues. As the instrumented program runs, it logs the number of times that D is called

from each location. The gprof post-processor then assumes that the total time spent in D can

accurately be apportioned among the call sites according to the relative number of calls.

More sophisticated tools log not only the caller and callee but also the stack backtrace (the

contents of the dynamic chain), allowing them to cope with the case in which D consumes

twice as much time when called from A as it does when called from B or C.

If our program is underperforming for algorithmic reasons, it may be enough to know where

it is spending the bulk of its time. We can focus our attention on improving the source code

in the places it will matter most. If the program is underperforming for other reasons,

however, we generally need to know why. Is it cache misses due to poor locality, perhaps?

Branch mispredictions? Poor pipeline performance? Tools to address these and similar

questions generally rely on more extensive instrumentation of the code or on some sort of

hardware support.

As an example of instrumentation, consider the task of identifying basic blocks that execute

an unusually small number of instructions per cycle. To find such blocks we can combine

 (1) the aggregate time spent in each block (obtained by statistical sampling),

(2) a count of the number of times each block executes (obtained via instrumentation), and

(3) static knowledge of the number of instructions in each block. If basic block i contains ki

CSE DEPARTMENT, NCERC PAMPADY Page 148

instructions and executes ni times during a run of a program, it contributes kini dynamic

instructions to that run. Let

Most modern processors provide a set of performance counters that can be used to good effect

by performance analysis tools. The Intel PentiumM processor, for example, has two performance

counters that can be configured by the kernel to count any of 47 different kinds of events,

including branch mispredictions; TLB (address translation) misses; and various kinds of cache

misses, interrupts, executed instructions, and pipeline stalls. Unfortunately, performance counters

are generally a scarce resource (one might often wish for many more of them). Their number,

type, and mode of operation varies greatly from processor to processor; direct access to them is

usually available only in kernel mode; and operating systems do not always export that access to

user-level programs with a convenient or uniform interface. Portable tools that make use of

performance counters are an active topic of research.

CSE DEPARTMENT, NCERC PAMPADY Page 149

CONTENT BEYOND SYLLABUS

Python programming paradigms

Python supports three types of Programming paradigms
 Object Oriented programming paradigms

 Procedure Oriented programming paradigms

 Functional programming paradigms

Object Oriented programming paradigms

In the object-oriented programming paradigm, objects are the key element of paradigms.

Objects can simply be defined as the instance of a class that contains both data members and

the method functions. Moreover, the object-oriented style relates data members and methods

functions that support encapsulation and with the help of the concept of an inheritance, the

code can be easily reusable but the major disadvantage of object-oriented programming

paradigm is that if the code is not written properly then the program becomes a monster.

Advantages

 Relation with Real world entities

 Code reusability

 Abstraction or data hiding

Disadvantages
 Data protection

 Not suitable for all types of problems

 Slow Speed

Example:

class Emp has been defined here

class Emp:

 def __init__(self, name, age):

 self.name = name

 self.age = age

CSE DEPARTMENT, NCERC PAMPADY Page 150

 def info(self):

 print("Hello, % s. You are % s old." % (self.name, self.age))

Objects of class Emp has been

made here

Emps = [Emp("John", 43),

 Emp("Hilbert", 16),

 Emp("Alice", 30)]

Objects of class Emp has been

used here

for emp in Emps:

 emp.info()

Output:
Hello, John. You are 43 old.

Hello, Hilbert. You are 16 old.

Hello, Alice. You are 30 old.

Procedural programming paradigms

In Procedure Oriented programming paradigms, series of computational steps are divided

modules which means that the code is grouped in functions and the code is serially executed

CSE DEPARTMENT, NCERC PAMPADY Page 151

step by step so basically, it combines the serial code to instruct a computer with each step to

perform a certain task. This paradigm helps in the modularity of code and modularization is

usually done by the functional implementation. This programming paradigm helps in an easy

organization related items without difficulty and so each file acts as a container.

Advantages
 General-purpose programming

 Code reusability

 Portable source code

Disadvantages
 Data protection

 Not suitable for real-world objects

 Harder to write

Example:

Procedural way of finding sum

of a list

mylist = [10, 20, 30, 40]

modularization is done by

functional approach

def sum_the_list(mylist):

 res = 0

 for val in mylist:

 res += val

 return res

CSE DEPARTMENT, NCERC PAMPADY Page 152

print(sum_the_list(mylist))

Output:
100

Functional programming paradigms

Functional programming paradigms is a paradigm in which everything is bind in pure

mathematical functions style. It is known as declarative paradigms because it uses declarations

overstatements. It uses the mathematical function and treats every statement as functional

expression as an expression is executed to produce a value. Lambda functions or Recursion are

basic approaches used for its implementation. The paradigms mainly focus on ―what to solve‖

rather than ―how to solve‖. The ability to treat functions as values and pass them as an

argument make the code more readable and understandable.

Advantages
 Simple to understand

 Making debugging and testing easier

 Enhances the comprehension and readability of the code

Disadvantages
 Low performance

 Writing programs is a daunting task

 Low readability of the code

Example:

Functional way of finding sum of a list

import functools

 mylist = [11, 22, 33, 44]

 # Recursive Functional approach

def sum_the_list(mylist):

 if len(mylist) == 1:

CSE DEPARTMENT, NCERC PAMPADY Page 153

 return mylist[0]

 else:

 return mylist[0] + sum_the_list(mylist[1:])

lambda function is used

print(functools.reduce(lambda x, y: x + y, mylist))

Output:

110

